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Abstract

I propose a simple way to obtain robust standard errors in linear panels in a spatial

context with endogenous covariates where the number of time periods is small relative

to the cross sectional dimension. The method is based on applying a Spatial HAC to

an average of moment conditions across time to obtain a covariance estimator that is

robust to both spatial and serial correlation (HACSC). I also present a control function

approach (CF) alternative to estimate the parameters and extend the HACSC estima-

tor to this case, where the standard errors require an adjustment to account for the

sampling variability induced by the first stage estimation. In addition, I derive the

Fixed Effects-Random Effects equivalence under a Correlated Random Effects frame-

work in the presence of a spatial lag of the dependent variable to obtain a fully-robust

Hausman-type test using the HACSC estimator. I run a Monte Carlo experiment and

show that the HACSC estimator is robust to strong patterns of serial and spatial cor-

relation. Furthermore, I also find that whenever the CF assumptions hold, the CF

approach is more efficient than Two-Stage Least Squares. Finally, I estimate the effect

of school district spending on the performance of fourth-grade students in Michigan,

allowing for spillovers across districts. I find that the expenditure from neighboring

districts has a positive and non-negligible impact on test passing rates.

1 Introduction

The assumption of independent data is widespread in empirical economics since it sim-

plifies many of the estimation methods. However, in many fields such as international

trade, urban economics, public policy or even network analysis, this assumption might

not hold since the outcome variable of an individual might be affected by other obser-

vations’ actions, which leads to (spatially) dependent data. Furthermore, many of the

tools used to develop the asymptotic theory behind popular econometric methods such

1



as the Central Limit Theorem and Law of Large Numbers often rely on independent

and identically distributed (i.i.d.) data. This facilitates both the estimation and infer-

ence, but if this assumption is violated, then the latter becomes more difficult even if

the parameters are estimated consistently.

Additionally, the increasing availability of data sets over time has increased the

popularity of panel methods in recent years as they allow to incorporate time effects

and to estimate richer models. Nevertheless, they also introduce complications because

the presence of unobserved heterogeneity could generate inconsistency problems both in

the parameters and standard errors if it is not properly handled. When combining both

spatially dependent observations and panel data, inference becomes more challenging

since the error term can be both serially and spatially correlated.

To address the spatial correlation, the literature in the field has usually resorted to

assume and model a particular structure of the error term, as it was common to do

with time series data. However, since the seminal work of White (1980), the common

practice nowadays in the latter is to use standard errors that are robust to general forms

of heteroskedasticity and autocorrelation (HAC). This procedure has been extended to

the spatial framework (SHAC) by Conley (1999) and Kelejian and Prucha (2007) in a

cross sectional setting. However, to the best of my knowledge and surprisingly enough,

this has not been extended to the panel case where the time dimension is fixed and the

number of units of observation goes to infinity, even in the linear case.1 Admittedly,

there are many cases in which the time dimension is also large, however there are

also instances where the number of observations across time is considerably smaller

compared to the cross sectional dimension.

This generates issues because ignoring the serial correlation could still generate

biased standard errors, even if the associated covariance matrix is robust to spatial cor-

relation. In fact, one of the few routines implemented in Stata for panel data in a spatial

context corrects the standard errors for spatial correlation, but assumes serial indepen-

dence of the error terms. The main purpose of this paper is to propose a simple way

to obtain robust standard errors in a linear panel that are robust to heteroskedasticity

and both to spatial and serial correlation (HACSC), without imposing any structure on

the time dimension and using a Fixed Effects framework with endogenous covariates.

I also extend this procedure to the case of the control function approach, where the

computation of standard errors is more difficult due to the presence of a generated

regressor.

HAC estimators have been extensively used in the time series literature since they

avoid having to model the error term structurally, which can lead to inconsistency

1Perhaps one of the reasons is that econometricians assume that it is obvious what to do, but many
methods make strong assumptions in the time dimension like serial independence.
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issues if that process is misspecified. Newey and West (1987) were the first to extend

White’s estimator to allow for general forms of heteroskedasticity and autocorrelation.

In the panel case, Arellano (1987) introduced the panel clustered standard errors, which

are robust to heteroskedasticity and autocorrelation but require that the observations

between clusters to be uncorrelated.

In spatial panels, multiple authors have made important contributions to the field,

extending many of the methods developed in the time series literature. For example,

Driscoll and Kraay (1998) presented how to deal with spatially dependent panel data

in a GMM context by averaging the moment conditions in the cross section dimension

index, N . Their approach relies on holding fixed N and letting time dimension T → ∞.

Vogelsang (2012) develops asymptotic theory for linear spatial panels with fixed effects

in a fixed-b framework by averaging HAC estimators and by computing the HAC for

averages as in Driscoll and Kraay (1998). In this case, the asymptotics rely again in

T → ∞ and allowing N to remain fixed or to grow. In a similar context Kim and

Sun (2013) proposed a bivariate kernel HACSC estimator, which requires that both the

cross section and time dimensions to go to infinity. Bester et al. (2011) suggested a

cluster covariance matrix that is applicable when the data is dependent in the context

of time series, spatial and panel data. More recently, Müller and Watson (2022a)

introduced a new methodology to construct confidence intervals based on population

principal components with the property that the resulting interval will have a coverage

probability of 95% for a set of spatial patterns in a cross sectional setting. Müller

and Watson (2022b) extended this framework to spatial panels to cover estimation

techniques like difference-in-difference setups.

At the cross sectional level, Conley (1999) was the first to develop a Spatial HAC

(SHAC) estimator in a GMM context. His approach is based on the assumption that

the data generating process is spatially stationary. When working with dependent data

and allowing N → ∞, it is common to assume some sort of weak dependence mecha-

nism, analogous to the time series literature, so that the influence of one observation

on other units diminishes as the distance between them increases. In this case, Conley

assumes that the data is spatially α−mixing. Bester et al. (2016) provide a fixed-b

analysis of Conley’s SHAC estimator. Kelejian and Prucha (2007) relax the spatial

stationarity assumption and model the spatial dependence in terms of a weighting ma-

trix, arguing that having a different number of neighbors, as it is common in empirical

work, violates the assumption. It is important to note that their SHAC estimator is

based on consistent estimates of the error terms, but they do not provide any parameter

estimation framework.

Kim and Sun (2011) generalize this estimator to allow general linear and non linear

models using moment conditions. Conley and Molinari (2007) performed a Monte Carlo
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study in which they compared the performance of multiple covariance estimators with

dependent data in the context of locations measured with error and they concluded that

non parametric estimators work better compared to parametric ones such as GMM and

maximum likelihood estimators. In this paper, I follow Driskoll and Kraay’s approach,

but instead of averaging the moment conditions over the cross sectional dimension, I

average the moment conditions over time and construct a GMM estimator and then

apply Kelejian and Prucha’s SHAC over the corresponding residuals. By doing this,

I avoid imposing any assumptions over the serial correlation and hence, construct a

covariance estimator that is robust to both serial and spatial correlation.

Beyond testing the statistical significance of the effect of a covariate on the response

variable, robust inference is also important when trying to choose the correct specifica-

tion of a model. More specifically, the correlated random effects (CRE) approach has

been very popular in recent years because it is a simple way to test between Random

Effects (RE) and Fixed Effects (FE) specifications and it allows to include time constant

variables as noted by Joshi and Wooldridge (2019). Furthermore, we can obtain the FE

coefficients of the time varying variables by including the time average of these on the

right hand side of the equation in a Pooled OLS or RE regression, a result attributed

to Mundlak (1978). Debarsy (2012) was the first to extend the Mundlak approach to

the spatial setting. More recently, Li and Yang (2020) showed that when the model

includes a structurally modeled error term (which involves maximum likelihood esti-

mation), the equivalence holds conditional on the parameter associated with the error

term, however, the equivalence breaks unconditionally, i.e., when this parameter has to

be estimated jointly with the rest of parameters. In this paper, I show that the result

holds in a specific setting; namely, if the model does not include a structurally modeled

error term.

One of the additional advantages of not imposing a particular spatial structure on

the error term is that some estimation methods become readily available such as Two

Stage Least Squares (2SLS) or a Control Function (CF) approach (Blundell and Powell

2003) whenever the researcher suspects an endogenous variable is in the model. In fact,

adding a spatial lag of the response variable as a covariate yields the spatial autore-

gressive model (SAR), a very popular model in this literature. However, Kelejian and

Prucha (1998) showed that this term induces an endogeneity problem, which is why

the researcher has to resort to an Instrumental Variable (IV) procedure. In terms of

the estimation of parameters, both 2SLS and the CF approach require the availability

of instruments, however one important difference is that the latter imposes additional

assumptions and is therefore less robust than 2SLS. On the other hand, if the assump-

tions hold, the CF allows to deal with the endogeneity in a more parsimonious way
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if multiple functions2 of the endogenous variable appear on the right hand side of the

equation and is probably more efficient (Wooldridge 2010). Note that this parsimony is

relevant in the spatial case since it is common to include spillover effects in the models

and therefore, the likelihood of having multiple functions of a variable increases in this

context.

In a spatial setup, Basile (2009) and Basile et al. (2014) extended the CF to additive

non-parametric models. In terms of inference, Basile et al. (2014) recommends to

use bootstrap to obtain confidence intervals, a practice that is common even in the

i.i.d. case. However, as pointed out by Kunsch (1989), the independence assumption

plays a critical role on the validity of the bootstrap, so besides the computational cost,

in a spatial context this is not a trivial procedure due to the dependence between

observations. Intuitively, if we just randomly sample the data in a time series setting

at each bootstrap repetition, the serial correlation structure would be lost and a similar

issue occurs in the spatial case. This is why different bootstrap methods have been

proposed in the time series literature (see Politis and White [2004] for a brief overview),

nevertheless their extension to the spatial case is not straightforward due to the absence

of a natural ordering of the observations. Given this, it might be desirable to obtain a

closed-form formula for the covariance matrix when the empirical researcher is working

with parametric linear models with panel data in a spatial context. This paper tries

to fill this hole in the literature by adjusting the HACSC estimator to the CF setting.

This adjustment is necessary because in addition to deal with the spatial and serial

correlation, it is necessary to take into account the sampling error induced by the first

stage estimation.

The rest of the paper is organized a follows. Section 2 discusses the model and

the assumptions used to obtain the estimator of the covariance matrix. Section 3

presents the HACSC estimator and its asymptotic properties. Section 4 derives the FE

and RE equivalence using the correlated random effects approach in a spatial context.

Section 5 presents an additional application of the HACSC estimator under a Feasible

GLS context. Section 6 presents the control function approach and a discussion of

the additional assumptions imposed in this context. Section 7 shows an empirical

application of the HACSC estimator using data from the Michigan education system.

Section 9 concludes.

2A well known result in the literature is that 2SLS and the CF give the same numerical coefficients if
only one function of the endogenous variable is in the model. This carries over to the spatial case under the
settings outlined at the beginning of the paragraph.
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2 The Model

2.1 Estimation of the parameters

Consider the following model3:

yit = x1itβ1 + x2itβ2 +WiX1tγ1 +WiX2tγ2 + λWiyt + ci + uit

= xitβ +WiXtγ + λWiyt + ci + uit, i = 1 . . . N, t = 1 . . . T (2.1)

where yit is the dependent variable, x1it is a 1×(k1+1), vector of explanatory exogenous

variables (including an intercept), x2it is a (1×k2) vector of endogenous variables. The
sense in which x1it is exogenous will be clarified below. Wi is the i-th row of the N ×N
time invariant weighting matrix W , whose diagonal elements are zero, X1t and X2t are

the N × k1 and N × k2 matrices of exogenous and endogenous covariates, respectively,

for all observations at time t, yt is the vector of dependent variables at time t, ci is the

individual heterogeneity and uit is the idiosyncratic error. Hence β, γ and λ are the

parameters of interest and they are of dimension (k+1)×1, k×1 and 1×1 respectively.

Throughout the rest of the paper, I assume that N → ∞ while T remains fixed.

We assume that there exist a set of instruments z2it for x2it of dimension l ≥ k2

(so that WiZ2t are the instruments for WiX2t). As previously showed by Kelejian and

Prucha (1998), the inclusion of a spatial lag of the dependent variable on the right hand

side also induces an endogeneity issue for which we also need instruments. Kelejian et al.

(2004) and Lee (2003) determined that the optimal set of instruments for this variable

is a sequence of the form W jXt, for j = 1...s, s ∈ N (in this case, we would only include

higher power spatial lags of X1t). If we let wj
rit ≡ W j

i Xrt, r = 1, 2, and Z2it ≡ WiZ2t,

Ait ≡ (x1it x2it w1it w2it Wiyt) and θ ≡ (β′1 β′2 γ′1 γ′2 λ)′, then the model can

be written more compactly as:

yit = Aitθ + ci + uit (2.2)

Since we are not assuming a particular structure for the error term, we can estimate

the parameters of (2.2) with the Fixed Effects 2SLS estimator. To do so, we can apply

the within transformation to all the variables, so let ÿit = yit− ȳi, where ȳi = 1
T

∑T
t=1 yit

and similarly for the independent variables and the instruments. Then we can use

3The model includes a spatial lag of the dependent variable on the right hand side for the sake of
generality and because this is a widely spread practice in the spatial literature. Nevertheless, it is important
to emphasize that its inclusion precludes the interpretation of (2.1) as a conditional mean function and also
complicates the interpretation of the coefficients. As such, in some sections of the paper this variable will be
omitted.
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Pooled 2SLS to the transformed model

ÿit = Äitθ + üit (2.3)

using the instruments Z̈it = (ẍ1it ẅ1it z̈2it Z̈2it ẅ2
1it ẅ3

1it . . . ẅ
s
1it). Note that all

the individual unobserved effects have been removed. To obtain consistent parameters,

we need the following orthogonality condition:

E(Z̈ ′
itüit) = E[git(Zit, θ)] = 0, t = 1 . . . T (2.4)

which is implied by the stronger strict exogeneity condition:

E(uit|Z) = E(uit|Z,W ) = 0

where Z is the NT × [(s + 1)k1 + 2l + 1] matrix of exogenous variables for all cross

sectional units and all time periods. We note that in this spatial setting, this condition

is stronger than in the non-spatial case because here we are conditioning the expected

value of uit with respect to all other units and not only i’s independent variables [see

Wooldridge (2010), pp. 301 for more details].

The git(Zit, θ) function is of dimension (s+1)k1+2l+1 = r, hence for each i, there

are T × r moment conditions. Under this framework, we could use many more moment

conditions because our strict exogeneity assumption implies orthogonality conditions

for each pair of time periods and cross sectional units [i.e. E(Z̈itüjs), i, j = 1 . . . N and

t, s = 1 . . . T ], however we will only use the conditions implied by the FE estimator.

Using a similar idea as Driscoll and Kraay (1998), for each observation i we can average

these moment conditions over time4, so let:

gi(Zi, θ) =
1

T

T∑
t=1

git(Zit, θ) (2.5)

From this, one can construct a GMM estimator, which will be defined as follows:

θ̂ = min
θ∈Θ

[
1

N

N∑
i=1

gi(Zi, θ)

]′
Ω̂

[
1

N

N∑
i=1

gi(Zi, θ)

]
(2.6)

where Ω̂ is a r × r positive definite, symmetric, weighting matrix. Admittedly, as

noted above we could estimate θ by running Pooled 2SLS on (2.3), however, the GMM

framework allows for more generality. For instance, averaging the moment conditions

over time for each observation can be done in other setups different than fixed effects.

Furthermore, this averaging might not be the most efficient approach, but obtaining

4Note however that Driskoll and Kraay’s case is based on having N fixed ant T → ∞ and they average
across i for all t.
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the optimal GMM in a two-step procedure might provide some efficiency gains with

respect to Pooled 2SLS.

2.2 Assumptions

The consistency and normality of this estimator can be obtained from a Uniform Law

of Large Numbers (ULLN) and Central Limit Theorem (CLT) derived by Nazgul and

Prucha (2009) for non-stationary random fields in a possibly uneven lattice. Before

stating their assumptions, we need some definitions. Let D ⊂ Rd, d ≥ 1 be an uneven

lattice and let ρ(i, j) = max1≤k≤d |jk− ik| and |i| = max1≤k≤d |ik|, where ik denotes the

k-th component of i, be a metric and norm, respectively, of Rd. The minimum distance

between two subsets E,F of D is defined as ρ(E,F ) = inf[ρ(i, j) : i ∈ E and j ∈ F ]

and let |E| denote the cardinality of a subset E ∈ D. Other definitions used throughout

this section can be found in the Appendix.

We now state the assumptions required to obtain the consistency and asymptotic

normality of θ̂. We note that the N subscript in the random fields and scalars of

the assumptions are to explicitly indicate that the ULLN and CLT can accommodate

for triangular arrays, which are common in the spatial literature and particularly in

Cliff-Ord type models. However, for notation simplicity, it will be suppressed in many

sections for the remainder of the paper.

Assumption 1

The lattice D ⊂ Rd, d ≥ 1 is infinite countable and there exists a distance ρ0 such that

ρ(i, j) ≥ ρ0 ∀i, j ∈ D. Without loss of generality, suppose that ρ0 > 1.

Assumption 1 provides the necessary structure to the lattice. Note that the existence

of the distance is essential in order to obtain non parametric estimators of the covariance

matrix and it is analogous to the time difference between observations in the time series

literature. Furthermore, it is possible that the distance observed by the researcher,

between two observations i and j, ρ∗(i, j), is measured with error. Note that the

existence and availability of this distance measure is not trivial, even in the leading

case of a geographical region. As shown in Figure 1, there are instances in which using

the linear distance between many pairs of points in that territory would not represent

the real burden to arrive from one location to another (e.g. driving), while there are

other cases in which this measure would be appropriate (e.g. pollution).
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Figure 1: Points in an irregular geographic region.

Now we state conditions related to the the gi(·) functions and Zi,N , where Zi,N repre-

sents an α-mixing random field such that i ∈ D. At this point, it is important to note

that since we are working with panel data and time averages for estimation purposes,

the random field considered in the assumptions is the one constructed with the time

averages for each observation.

Assumption 2 (Uniform L2 integrability)

There is an array of positive real constants {ci,N} such that

lim
k→∞

sup
N

sup
i∈DN

E
[
|Zi,N/ci,N |21 (|Zi,N/ci,N | > k)

]
= 0

Where 1(·) denotes an indicator function. Note that Assumption 2 allows for the

possibility of asymptotic unbounded second moments, however for the remainder of

the paper we will focus on the case of bounded moments, in which case we can set

ci,N = 1 ∀i. The next assumption put some restrictions on the α coefficients of the

random field.

Assumption 3 (α-mixing)

Let Q̄k
i,N := Q|Xi,N/ci,N |1(|Zi,N/ci,N |>k) denote the upper tail quantile function of

|Zi,N/ci,N |1(|Zi,N/ci,N | > k) and recall that αinv(u) is the inverse function of ᾱ1,1(m)

as in the definition specified in the Appendix. The α-mixing coefficients satisfy:

1. lim
k→∞

sup
N

sup
i∈DN

∫ 1
0 α

d
inv(u)

[
Q̄

(k)
i,N (u)

]2
du = 0.

2.
∞∑

m=1
md−1ᾱk,h(m) <∞ for k + h ≤ 4.
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3. ᾱ1,∞(m) = Op(m
−p−ε) for some ε > 0.

Under Assumptions 2 and 3.2 with k = h = 1 and letting {DN} be a sequence of

finite subsets of D that satisfies Assumption 1 such that |DN | → ∞ as N → ∞, a direct

application of Theorem 3 in Nazgul and Prucha (2009) leads to the conclusion that

1

|DN |
∑
i∈D

Zi,N − E(Zi,N )
p→ 0

Note that one could relax Assumption 2 to L1 uniform integrability for the theorem

to hold, nevertheless, the below CLT requires L2 uniform integrability. In order to

apply this pointwise WLLN to the gi(·, θ) functions, we assume that these satisfy the

regularity conditions specified in Assumption A.1 presented in the Appendix. Given the

fact that any measurable function of an α-mixing process is α-mixing, the gi(Zi,N , θ)

also satisfy a pointwise WLLN, i.e.

1

|DN |
∑
i∈D

gi(Zi,N , θ)− E[gi(Zi,N , θ)]
p→ 0 (2.7)

With this Weak Law of Large Numbers, in order for the above GMM estimator to

be consistent, we need an Uniform LLN for which we need the additional regularity

conditions on the gi(·, ·) functions stated in Assumption A.2. Under these assumptions,

we have the following proposition, which is a special case of Theorem 2 in Nazgul and

Prucha (2009).

Proposition 1. Let {DN} be a sequence of finite subsets of D that satisfies Assump-

tion 1 such that |DN | → ∞ as N → ∞ and let QN (θ) = 1
|DN |

∑
i∈DN

gi(Zi,N , θ).

Suppose (Θ, ν) is a compact metric space and consider a sequence of real valued func-

tions {gi(Zi,N , θ) : i ∈ DN , N ∈ N} satisfying Assumption A.2 and that for all θ in Θ,

these functions satisfy the WLLN in (2.7). Then

sup
θ∈Θ

|QN (θ)− E[QN (θ)]| p→ 0

With these tools at hand, define the following functions:

QN (θ) ≡

[
1

N

N∑
i=1

gi(Zi, θ)

]′
Ω̂

[
1

N

N∑
i=1

gi(Zi, θ)

]

Q(θ0) ≡ E[gi(Zi,N , θ0)]
′ Ω0 E[gi(Zi,N , θ0)]
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And suppose that Ω̂
p→ Ω0, where Ω0 is a positive definite matrix. Recalling that

E[gi(Zi, θ)] = 0 only when θ = θ0, the true population value, the following proposition

summarize the conditions under which the GMM estimator will be consistent:

Proposition 2. Suppose that all the conditions of Proposition 1 hold. Additionally,

assume that (i) gi(Zi, ·) are continuous for all θ ∈ Θ, (ii) Ω̂
p→ Ω0, an r × r positive

definite matrix and (iii) θ0 is the only vector for which the moment condition in (2.4)

holds. Then QN (θ̂) converges uniformly to Q(θ0) and θ̂
p→ θ0, the unique minimizer of

Q(θ).

Note that since 1
N

∑N
i=1 gi(Zi, θ) satisfies the ULLN of Proposition 1 and Ω̂

p→ Ω0,

the proof of this proposition follows from Theorem 4.1.1 in Amemiya (1985). To obtain

the asymptotic distribution of θ̂, we assume the following condition, which guaranties

that the sum is not dominated by any term.

Assumption 4

If we define σ̃2n = Var(Sn) and Sn =
∑

i∈DN
Zi,N . Then the following condition is

satisfied:

lim inf
n→∞

|DN |−1σ̃2n > 0

Under this assumption, Theorem 1 in Nazgul and Prucha (2009) ensures the asymp-

totic normality of the random variables Zi.

Proposition 3. Let {DN} be a sequence of finite subsets of D that satisfies Assumption

1 such that |DN | → ∞ as N → ∞ and let {Zi : i ∈ DN , n ∈ N} be a sequence of zero

mean real-valued random variables that satisfy Assumption 2. Furthermore, assume

that the random field is α-mixing satisfying Assumption 3. Then,

σ̃−1
n Sn

d→ N(0, 1)

Once again, the previous proposition applies directly to the underlying random

fields, however, we need a result to for the gi(Zi,N , θ) functions. Assuming that the

latter satisfy the standard regularity conditions of Assumption A.3 , the first order

conditions for the GMM estimator are[
1

N

N∑
i=1

∇θgi(Zi, θ̂)

]′
Ω̂

[
1

N

N∑
i=1

gi(Zi, θ̂)

]
= 0 (2.8)

Taking a mean value expansion of the last term around θ0 yields the following

expression:

gi(θ̂) = gi(θ0) +∇θgi(θ̃)(θ̂ − θ0) + remainder (2.9)

for θ̃ between θ̂ and θ0 element-wise and where I suppressed the dependence of gi on
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Zi for notation simplicity. Replacing (2.9) in (2.8) yields:

√
N(θ̂ − θ0) = −


[
1

N

N∑
i=1

∇θgi(θ̂)

]′
Ω̂

[
1

N

N∑
i=1

∇θgi(, θ̃)

]
−1

[
1

N

N∑
i=1

∇θgi(θ̂)

]′
Ω̂

[
1√
N

N∑
i=1

gi(θ0)

]
+ remainder (2.10)

Noting again that the∇θgi(θ) preserve the mixing conditions, then 1
N

∑N
i=1∇θgi(θ̂)

p→
E [∇θgi(θ0)] by the WLLN above. Since gi(θ) is continuously differentiable, by Slutzky’s

Theorem, the first term of (2.10) converges in probability to{
[E(∇θgi(θ0)]

′Ω0 [E(∇θgi(θ0)]
}−1

Furthermore, by the CLT,

1√
N

N∑
i=1

gi(θ0) = Op(1)

Therefore, taking the probability limit of (2.10), we obtain

√
N(θ̂ − θ0) = −

{
E [∇θgi(θ0)]

′Ω0E [∇θgi(θ0)]
}−1

E [∇θgi(θ0)]
′Ω0

[
1√
N

N∑
i=1

gi(θ0)

]
+ op(1) (2.11)

d→ N(0, C−1ΣC−1)

where

C =
{
E [∇θgi(θ0)]

′Ω0E [∇θgi(θ0)]
}−1 E [∇θgi(θ0)]

′Ω0

and

Σ = E[gi(θ0)gi(θ0)′] = Var[gi(θ0)] (2.12)

Note that for the cases considered in this paper, C is just a matrix of data, so we

do not need to estimate it. On the other hand, we need an estimator of the variance

of the moment conditions, which we present in the next section. From an empirical

implementation point of view, it is important to note that this GMM framework includes

the simple estimators mentioned at the beginning of the section as special cases. For

example, in the case of Ait containing only exogenous variables, then the GMM reduces

to the same solution as estimating (2.3) with Pooled OLS. If Ait has some endogenous

variables like in the model (2.1), and assuming that we have a set of instruments Zit,

then the Fixed Effects 2SLS can be obtained from the GMM estimator by setting

Ω̂ = Z̈ ′Z̈, where Z is the stacked NT × r matrix of instruments. Furthermore, we
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would need that the well known matrices of these estimators are of full column rank

and to converge in probability to non-singular finite matrices.

Another empirical consideration is the specification of the weighting matrixW since

in the model, the dependence of the outcome variable on other observations is generated

by this matrix. In practice, there exist different ways to specify W . For example, one

could assign weights as the inverse of the distance between two observations and set

to zero the weights after a threshold or use a k-neighbors scheme. When dealing with

geographic units, one could assign an equal weight for all the units j that share a border

with unit i (rook type) or if they share an edge or a vertex (queen type) like in Figure

XX, or even assign an equal weight to all other units in the sample [see LeSage and

Pace (2009) for a discussion on weighting matrices].

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Rook type weighting scheme

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Queen type weighting scheme

Figure 2: Rook and queen type weighting schemes. On the rook type scheme, ifW is row normalized,
only units 8, 12, 14 and 18 will receive a weight of 1

4 in row 13. Analogously, if a queen type scheme
is used, units 7, 8, 9, 12, 14, 17, 18 and 19 will have a weight of 1

8 in row 13 of W .

Nonetheless, some of these specifications might violate the assumptions stated in

this section. In particular, recall that we are working with an α-mixing random field,

which implies that the dependence between the observations decays as they are farther

apart. In this respect, it is clear that assigning an equal weight to all other observations

violates this assumption. In a similar fashion, a k-neighbors pattern might not satisfy

the α-mixing condition in cases where there are isolated units (e.g. a unit located alone

in an island). Note that these restrictions to W also apply in cases where the distance

measure is of economic nature or derived from a network perspective (e.g. degree of

centrality).
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3 The HACSC Estimator

To obtain robust standard errors, recall that because for each observation we took

the time average of their corresponding moment conditions, essentially we are working

with a cross sectional problem. The idea is therefore to apply Kelejian and Prucha’s

(2007) estimator of the covariance matrix in this context, for which we need consistent

estimates of the error terms. Analogous to the time series literature, their estimator

requires a kernel function K(·), which will provide weights to the covariance terms en-

tering the sums. In principle, only the covariance of observations that are close relative

to some distance measure will receive a positive weight, while observations that are far

away will receive a weight of zero. In other words, this function will operationalize the

weak dependence assumption between observations to the error terms. Note however

that this kernel will provide weights at the cross sectional dimension and not across

time. To fix ideas, the researcher will need to choose a distance ρb such that ρb → ∞
as N → ∞ that will play the role of the truncation lag in a time series context. The

next assumption imposes additional restrictions on the kernel function.

Assumption 5

The kernel K : R → [−1, 1], satisfies the following conditions:

1. K(0) = 1

2. K(x) = K(−x)

3. K(x) = 0 for x > 1

4. |K(x)− 1| ≤ cK |x|αK , |x| ≤ 1 for some αK ≥ 1 and 0 < cK <∞.

As pointed out by Kelejian and Prucha (2007), Assumption 5 is satisfied by many

kernels such as the rectangular kernel, Bartlett, the triangular kernel, among others.

The next assumption imposes some structure for the error terms.

Assumption 6

The N × 1 vector of errors is generated as follows:

u = Rε (3.1)

where the ε is a N × 1 vector of i.i.d. random variables with mean 0, variance of 1 and

E[|ε|q] < ∞ for q ≥ 4 and the R is a N ×N non-singular unknown matrix whose row

and column sums are uniformly bounded.
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In light of Assumption 6, recall that although theoretically we are working with a

cross sectional problem because we took the time average of the moment conditions,

the underlying structure of the data is a panel. In this sense, (3.1) can also be seen as

an average, so for each i, we have:

ui =


ui1

ui2
...

uiT

 (3.2)

where it t-th row of ui is:

ui,t =
t∑

s=1

Ri,sεs

and Ri,s is the i-th row of Rs, a matrix with similar properties than R defined above,

at time s. This implies that in each time period, the disturbances will depend on other

unit’s disturbances, past own values of disturbances, and past values of other unit’s

disturbances. In other words, this structure allows for both spatial correlation and

serial correlation, “spatial serial” correlation and heteroskedasticity. Nevertheless, the

uniform boundedness condition for R guaranties that the correlation between units is

restricted at the cross sectional dimension, analogous to the time series case. Given the

distance ρb, we can denote with vi the number of pseudo-neighbors for i:

vi =

N∑
j=1

1[ρ∗(i, j) ≤ ρb]

and let v = maxi vi. In words, vi denotes the number of units j that are at a distance

less than ρb from unit i. The following assumption is related to v.

Assumption 7

The random variable v satisfies the following conditions:

1. E(v2) = op(N
2τ ), where τ ≤

(
1
2

) q−2
q−1 and q is defined in Assumption 6.

2.
∑N

j=1 |σij |ρ(i, j)αS ≤ cS , for αS ≥ 1 and 0 < cS < ∞ and σij is the (i, j)-th

element of Σ (defined below).

Assumption 7 plays a role in terms of limiting the degree of correlation between

units, as well as ensuring that the estimator of the covariance matrix is consistent given

the fact that we are using residuals instead of errors to estimate it. Assumptions 8 and

9 provide an identification condition and bound the measurement error of the distance,
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respectively.

Assumption 8

The matrix of exogenous variables, Z̈, has full column rank and its elements are uni-

formly bounded in absolute value by the finite constant 0 < cZ < 0. For a fixed and

finite T , the matrices:

1. lim
N→∞

(NT )−1Z̈ ′Z̈ = QZZ .

2. lim
N→∞

(NT )−1Z̈ ′RR′Z̈ = QZRRZ .

3. plim
N→∞

(NT )−1Z̈ ′Z̈ = QZZ .

are finite and non-singular. Furthermore, the matrix plim
N→∞

(NT )−1Z̈ ′Ä = QZA has full

column rank 2k. Similarly, the diagonal elements of W are zero and all of its elements

are uniformly bounded by a finite constant 0 < cW <∞.

Assumption 9

The distance measure used by the empirical researcher ρ∗(·, ·) is potentially measured

with error, i.e.

ρ∗(i, j) = ρ(i, j) + eij ≥ 0

where eij = eji denotes the measurement errors which are bounded in absolute value

by the finite constant 0 < ce <∞. Furthermore, {eij} is independent of {εi}.

We need an additional assumption to account for the fact that we are using residuals

instead of the actual error terms. This condition is provided in Assumption A.4 and

should be satisfied by most N
1
2 -consistent estimators. An extensive discussion of this

and the previous assumptions is provided by Kelejian and Prucha (2007).

Note that given equations (2.4) and (2.5) and the matrix Σ specified in (2.12), we

have the following:

E[gi(θ0)gi(θ0)′] = E
[
Z̈ ′
iüiü

′
iZ̈i

]
(3.3)

Because all the analysis is conditional on Z andW and by applying the Law of Iterated

Expectations, from (3.3) and Assumption 6 we get that E(uu′) = RR′ = Σ, where u is

the N×1 vector of stacked error terms. In practical terms and recalling that gi(·, ·) was
defined as an average over time, we can estimate (3.3) by replacing the error terms by

their residual counterparts and the expected value by an average applying the WLLN.

Therefore, for the proposed estimator Σ̂, its (r, s)-th element can be obtained as follows:
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Σ̂rs =
1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
l=1

Z̈it,rZ̈jl,s
ˆ̈uit ˆ̈ujlK

[
ρ∗(i, j)

ρb

]
(3.4)

where Z̈it,r is the value of the covariate r for observation i at time t, while its population

counterpart is given by the following expression:

Σrs =
1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
l=1

Z̈it,rZ̈jl,lσit,jl (3.5)

The following proposition establishes the consistency of Σ̂.

Proposition 4. Consider the model in (2.1) and Assumptions 5-9 and A.4. Suppose

that the (r, s)-th elements of Σ and Σ̂ are given by (3.5) and (3.4) respectively. Then

Σ̂
p→ Σ.

Given the fact that we have assumed that T is fixed from the beginning, the proof

of this proposition is virtually the same as in Kelejian and Prucha (2007). Note that

we can re-write (3.4) as follows:

Σ̂rs =
1

NT

{
N∑
i=1

T∑
t=1

T∑
l=1

Z̈it,rZ̈il,s
ˆ̈uit ˆ̈uis ·K [0]

+

N∑
i=1

N∑
i ̸=j

T∑
t=1

T∑
l=1

Z̈it,rZ̈il,s
ˆ̈uit ˆ̈ujsK

[
ρ∗(i, j)

ρb

] (3.6)

The first term of (3.6) makes it clear that there are no restrictions imposed on the serial

correlation for a particular observation, as the terms are not being down-weighted.

4 Correlated Random Effects

A direct application of the HACSC proposed in the previous section is related to the

Correlated Random Effects (CRE) context. One of the most popular method applied in

a panel setting is the fixed effects estimator since it allows the unobserved heterogeneity

ci to be arbitrarily correlated with the explanatory variables in the model. On the other

side of the spectrum, the random effects approach imposes no correlation between ci and

the independent variables. A typical task that the empirical researcher must face is to

choose between these two specifications, for which the literature has suggested multiple

approaches. One of these is the CRE framework, which imposes restrictions on the

distribution of the individual heterogeneity conditional on the regressors (Wooldridge,

2010).

One option is to follow Mundlak (1978) suggestion, which assumes that ci can be
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modeled as a linear function of the averages of the time varying independent variables.

More specifically, consider the following model:

yit = xitβ + ci + uit, i = 1 . . . N, t = 1 . . . T (4.1)

Assuming that the xi’s are time varying, Mundlak considered the following specification:

ci = η + x̄iδ + ei (4.2)

where ei is uncorrelated with x̄i by assumption. Replacing (4.2) in (4.1) yields:

yit = xitβ + x̄iδ + ei + uit, i = 1 . . . N, t = 1 . . . T (4.3)

Mundlak (1978) showed that estimating β in (4.3) by pooled OLS (POLS) or random

effects yields the same β than estimating (4.1) by fixed effects. In addition, we can

perform a Hausman-type test using this equation by testing δ = 0 to determine the

suitability of one estimator versus the other one. It turns out that this FE-RE equiv-

alence carries over the spatial setting under a particular setting, namely a model such

as in equation (2.1), i.e. no autoregressive process of the error term u (Li and Yang

(2020) showed that the equivalence breaks if we try to model structurally). Further-

more, this result carries over to the case of endogenous variables, which is a common

issue in empirical work.

More concretely, consider the model in (2.1) and using the same notation, the Fixed

Effects Two Stage Least Squares (FE2SLS) coefficients can be obtained by running

Pooled 2SLS on the following equation:

ÿit = ẍ1itβ1 + ẍ2itβ2 + ẅ1itγ1 + ẅ2itγ2 + ρWiÿt (4.4)

using the instrumental variables (z̈2it Z̈2it ẅ2
1it ẅ3

1it . . . ẅ
s
1it), s ∈ N. Then, it can be

shown that running Pooled 2SLS on:

yit − ηȳi = (x1it − ηx̄1i)β1 + (x2it − ηx̄2i)β2 + (w1it − ηw̄1i)γ1 + (w2it − ηw̄2i)γ2

+ ρWi(yt − ηȳ) + (1− η)x̄1iδ1 + (1− η)z̄2iδ2 + (1− η)w̄1iλ1

+ (1− η)Z̄2iλ2 + (1− η)
s∑

j=2

w̄j
1iζj (4.5)

using IV’s: [(z2it − ηz̄2i) (Z2it − ηZ̄2i) (w2
1it − ηw̄2

1i) . . . (w
s
1it − ηw̄s

1i)

(1− η)Z̄2i (1− η)WiZ̄2 (1− η)w̄2
1i . . . (1− η)ws

1i]

yields the same (β1 β2 γ1 γ2 ρ) as in (4.4) and where η = 1−
[
σ2u/(σ

2
u + Tσ2c )

]1/2
is

assumed to be known. The following proposition summarizes this result.
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Proposition 5. Suppose Γ̃ = (β̃2 β̃2 γ̃1 γ̃2 ρ̃) is the coefficient vector obtained

by running Pooled 2SLS to equation (4.5). Then Γ̃ = Γ̂FE2SLS, the coefficient vector

obtained by running Pooled 2SLS to equation (4.4).

The proof of this proposition can be found in the Appendix. Note that we have

included the time averages of the instruments in (4.5), but this might introduce some

distortions in the sense that the dimension of the z’s might be larger than the original

dimension of the x2’s. In practice, this will impact the degrees of freedom employed to

perform the hypothesis testing to choose between FE and RE. Although when the cross

sectional dimension is large this might not matter, in small samples this could have a

significant impact in the statistical significance of the coefficients.

It is important to note that this FE-RE equivalence is an algebraic result, and as

it turns out, one can obtain the FE coefficients of (β γ ρ) in (4.5) by replacing the

average of the instruments by the time averages of the predicted values of a regression

of the endogenous variables on all of the exogenous variables, i.e.

yit − ηȳi = (x1it − ηx̄1i)β1 + (x̂2it − η ˆ̄x2i)β2 + (w1it − ηw̄1i)γ1 + (ŵ2it − η ˆ̄w2i)γ2

+ ρWi(ŷt − η ˆ̄y) + (1− η)x̄1iδ1 + (1− η)ˆ̄x2iδ2 + (1− η)w̄1iλ1

+ (1− η) ˆ̄w2iλ2 + (1− η)Wi ˆ̄yζ1 (4.6)

This will “correct” the degrees of freedom issue mentioned above, at the expense of

making the asymptotic theory harder since we have to take into account that we are

using the predicted values instead of the original instrument averages. Proposition 6

summarizes this result and is proved in the Appendix.

Proposition 6. Suppose Γ̌ = (β̌1 β̌2 γ̌1 γ̌2 ρ̌) is the coefficient vector obtained by

running Pooled OLS to equation (4.6), where the ˆrepresent the linear projections of the

endogenous variables on the exogenous covariates. Then Γ̌ = Γ̂FE2SLS, the coefficient

vector obtained by running Pooled 2SLS to equation (4.4).

Once the researcher estimates the coefficients of (4.5) or (4.6), the next natural step

is to test the hypothesis Ξ = (δ λ ζ) = 0 [here ζ denotes either (ζ2 . . . ζs) in (4.5)

or ζ1 in (4.6)] to decide between FE and RE specifications. Even if model (2.1) does

not have an explicit functional form for the error term, the uit could still be serially or

spatially correlated, therefore, we can use the HACSC estimator proposed in section 3

to conduct a fully robust Hausman-type test in a simple way. Specifically, one would

need to get the Wald statistic as W = (RΞ)′(RΣ̂R′)−1(RΞ), where R includes the set

of restrictions on the coefficients, Ξ is the full set of coefficients estimated and Σ̂ is the

estimated HACSC robust covariance matrix.
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5 Feasible GLS

As previously stated and analogous to the time series literature, it is common practice

in empirical work to assume a particular structure of the error term in a spatial context.

In particular, consider the following model:

yt = Xtβ + vt (5.1)

vt = ρWvt + εt

εt = c+ ut

where yt is a N × 1 vector, Xt is a N × k matrix of covariates, c denotes the vector

of individual heterogeneity and ut is a vector of idiosyncratic errors at time t. In this

model, Xt may contain spatial lags of the independent variables. In what follows, the

conditioning on both Xt andW of all the analysis is implicit. By stacking the equations

by time period, the model can be rewritten as follows:

y = Xβ + v (5.2)

v = (IT ⊗ ρW )v + ε

ε = (et ⊗ IN )c+ u

where et represents a T × 1 vector of ones. At this point, the researcher needs to make

an assumption about the orthogonality condition between the independent variables

and the composite error term and more specifically, the vector c. A typical choice is to

assume that all the explanatory variables X are exogenous with respect to both vectors

c and u, with each element of these being i.i.d. with zero mean and finite variances σ2c

and σ2u respectively, and both vectors being independent from each other. Note that

this working assumption is stronger than the one required to obtain the consistency of

the fixed effects estimator described in previous sections (as in the rest of the paper, I

assume that T is fixed and N → ∞).

Given these assumptions, from (5.1) we can write E(vtv′t) as follows:

E(vtv′t) = (σ2c + σ2u)(IN − ρW )−1(IN − ρW )−1 (5.3)

Or using the stacked version of (5.2) instead, then we can write E(εε′) = Ωε in the

following way:

Ωε = σ2c (JT ⊗ IN ) + σ2uINT (5.4)

where JT = ete
′
t. Therefore it follows that,

E(vv′) =
[
IT ⊗ (IN − ρW )−1

]
[σ2c (JT ⊗ IN ) + σ2uINT ]

[
IT ⊗ (IN − ρW )−1

]
(5.5)
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Note that the middle of this matrix has a classic random effects structure. In order

to compute this covariance matrix, it is assumed that the matrix (IN−ρW ) is invertible

and that |ρ| < 1 just as in the previous sections. Following the time series case and to

facilitate the computation of the middle of (5.5), note that

Ωε = σ2uQ0 + σ21Q1 (5.6)

where Q0 =
(
IT − JT

T

)
⊗ IN , Q1 = JT

T ⊗ IN and σ21 = σ2u + Tσ2c . Noting that Q0 and

Q1 are idempotent, symmetric, Q0 +Q1 = INT and that Q0Q1 = 0NT , it follows that

Ω−1
ε = σ−2

u Q0+σ
−2
1 Q1 and Ω

− 1
2

ε = σ−1
u Q0+σ

−1
1 Q1. In short, if the researcher is willing

to impose that the covariates are orthogonal to the individual heterogeneity vector c

and the error term in (5.2) follows a spatial AR(1) process, then the matrix E(vv′) will
have a particular form that depends only on three parameters.

Knowing this, one can obtain an estimator that is potentially more efficient than the

FE estimator. More specifically, the researcher can exploit the structure of the error

term in (5.2) to remove the spatial correlation by performing a spatial Cochrane-Orcutt

type transformation. Let

y∗ = y − (IT ⊗ ρW )y

X∗ = X − (IT ⊗ ρW )X

v∗ = v − (IT ⊗ ρW )v

Therefore, the transformed model is

y∗ = X∗β + v∗ (5.7)

Note that v∗ = ε so that (5.7) contains a classical composite error term. Given the

structure of ε, we can perform a second transformation by multiplying (5.7) by Ω
− 1

2
ε to

obtain

y̌ = X̌β + ε̌ (5.8)

where y̌ = Ω
− 1

2
ε y∗ and similarly for the rest of the terms. Note that

E
(
ε̌ε̌′
)
= Ω

− 1
2

ε E(εε′)Ω− 1
2

ε

= (σ−1
u Q0 + σ−1

1 Q1)(σ
2
uQ0 + σ21Q1)(σ

−1
u Q0 + σ−1

1 Q1)

= Q0 +Q1

= INT (5.9)

Hence (5.8) can be estimated by Pooled OLS to obtain a GLS-type estimator to

obtain efficiency gains, denoted by βGLS . If all the relevant matrices are well behaved

as N → ∞ and non-singular, Kapoor et al. (2007) showed that
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(NT )
1
2

(
β̂GLS − β

)
d→ N(0,Ψ) as N → ∞ (5.10)

where Ψ =
(
σ2uM

0
XX + σ21M

1
XX

)−1
and M j

XX = lim
N→∞

1
NTX

∗′QjX
∗ for j = 0, 1. The

previous analysis requires knowledge of σ2c , σ
2
u and ρ and therefore it is not feasible.

Kapoor et al. (2007) proposed generalized moments estimators of these parameters and

they showed that if β̂FGLS is the Pooled OLS estimator of (5.8) using any consistent

estimators σ̂2c , σ̂
2
u and ρ̂ instead of σ2c , σ

2
u and ρ, then

(NT )
1
2

(
β̂GLS − β̂FGLS

)
p→ 0 and Ψ̂−Ψ

p→ 0 (5.11)

where Ψ̂ =
(

1
NT X̂

∗′Ω̂−1
ε X̂∗

)−1
, provided that the working assumptions used to derive

(5.10) hold. Note that the hats over the components of Ψ̂ denote the dependence of

the terms on σ̂2c , σ̂
2
u and ρ̂.

The validity of the previous covariance matrix Ψ rests on the working assumptions

that the error term v follows a spatial AR(1) and the conditions imposed on each element

of c and u hold. However, from an empirical perspective it is always possible that the

structure of Ωε does not have the RE form due to the presence of heteroskedasticity

or serial correlation on ui for example. It is important to stress out that even if Ωε

does not have the same structure as in (5.4), β̂FGLS remains consistent, provided that

the strict exogeneity condition (more formally this would mean that E[X ⊗ c] = 0 and

E[X ⊗ u] = 0) and the corresponding rank condition continue to hold.

Nevertheless, if the researcher is unsure about the assumptions related to the vectors

of individual heterogeneity c or the idiosyncratic errors u made in this section, it is wise

to make robust inference. In these instances, the HACSC estimator presented in this

paper can be useful to achieve this purpose. More specifically, consider the residuals

¨̌εt = y̌t − X̌tβ̂FGLS , t = 1 . . . T.

where β̂FGLS is obtained by estimating (5.8). In this context, the (r, s)-th element of

the middle of the robust covariance matrix is

Σ̂rs =
1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
l=1

X̌it,rX̌jl,s ¨̌εit ¨̌εjlK

[
ρ∗(i, j)

ρb

]
(5.12)

And the fully robust covariance matrix is:

Ψ̌ =
(
X̌ ′X̌

)−1


N∑
i=1

N∑
j=1

T∑
t=1

T∑
l=1

¨̌εit ¨̌εjlX̌
′
itX̌jlK

[
ρ∗(i, j)

ρb

](X̌ ′X̌
)−1

(5.13)

where X̌it is the 1 × k vector of covariates at time t for observation i. Note that
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the computation of Ψ̌ requires the use of the transformed variables and not the original

ones, which is consistent with the estimating equation (5.8). As in the previous sections,

the kernel function K(·) will provide weights so that the (possible) spatial correlation

decreases for observations that are far apart according to the distance measure ρ(·, ·).
Naturally, Ψ̌ will be valid whether the RE structure of Ωε holds or not and will be

robust to arbitrary serial and spatial correlation, as well as heteroskedasticity.

Throughout this section we have assumed that all the elements of the explanatory

variables are uncorrelated with the error term u. If some elements of X are endogenous

(i.e. E[x′ituit] ̸= 0) and the researcher has available instruments Z, then the extension

to an IV procedure is straightforward as discussed in Mutl and Pfaffermayr (2010) and

Baltagi and Liu (2011). The estimation approach would be to apply Pooled 2SLS to

the estimating equation 5.8 using instruments Ž, where theˇdenotes the same transfor-

mations made earlier in the section. In this instance, the computation of the covariance

matrix using the HACSC estimator would look like (3.4), but the researcher would need

to use the transformed variables as in this section instead.

6 Alternative estimation: a Control Function

Approach

It is well known that Instrumental Variables estimation procedures such as 2SLS deliver

consistent estimates of the parameters at the expense of losing precision when compared

to OLS as pointed out by Cameron and Trivedi (2005). In such instances, if the

researcher is willing to impose additional assumptions, she can resort to the control

function approach (Blundell and Powell 2003), which can deliver estimates that are

(potentially) more efficient as it will be shown in simulations. Consider the model

shown in (6.1), which is very similar to (2.1) but without the spatial lag of the dependent

variable on the right hand side5, which will allow us to interpret it as a conditional mean

function and for simplicity we will assume that there’s only one element in x2it:

yit = x1itβ1 + x2itβ2 +WiX1tγ1 +WiX2tγ2 + ci + uit

= xitβ +WiXtγ + ci + uit, i = 1 . . . N, t = 1 . . . T (6.1)

where the definitions are the same as in Section 1. By applying the within transforma-

tion, we obtain the estimating equation:

ÿit = ẍitβ +WiẌtγ + üit (6.2)

5It is certainly possible to use the control function approach with the spatial lag of the dependent variable
as a covariate
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As with the 2SLS case and using obvious notation, this approach also requires the

availability of a set of instruments Z̈it = (ẍ1it ẅ1it z̈2it Z̈2it). The first two assumptions

of the Control Function (CF) approach are the same as with 2SLS, namely: E(Z̈itüjt) =

0 for i, j = 1 . . . N and t = 1 . . . T and the identification condition rank[E(Z̈ ′Ä)] = 2k−1.

The first stage of the estimation involves the reduced form of the endogenous variable

on the instruments and obtaining the disturbances v̈2it, i.e.

v̈2it = ẍ2it − Z̈itψ (6.3)

where E(Z̈ ′
itv̈it) = 0. Given that E(Z̈ ′

itüit) = 0, note that ẍ2it and ẅ2it are endogenous

if and only if üit is correlated with v̈2it and Wiv̈2t. At this point we state the additional

assumption required by the CF approach:

E(üit|Z,X2,W ) = E(üit|Z, v̈2,W ) = E(üit|v̈2,W ) = µ1v̈2it + µ2Wiv̈2t (6.4)

This equation has two strong implicit restrictions. First, the second equality would

hold under independence of Z and (ü, v̈2,W ) and second, we are assuming a linear

conditional expectation of üit on the parameters. Given this, we can write

üit = µ1v̈2it + µ2Wiv̈2t + ëit (6.5)

Replacing (6.5) in (6.2) yields:

ÿit = ẍitβ +WiẌtγ + µ1v̈2it + µ2Wiv̈2t + ëit (6.6)

Stacking again all the explanatory variables into a matrix A and the coefficients

into a vector θ yields:

ÿit = äitθ + ëit (6.7)

The error term in (6.7) is uncorrelated with the rest of variables in the equation

(including ẍ2it and ẅ2it), so the parameters can be consistently estimated using Pooled

OLS by replacing the disturbances with the computed residuals from the first stage.

Therefore, the estimating equation for the main model becomes:

ÿit = ˆ̈aitθ + ëit (6.8)

where theˆdenotes that we are using generated regressors. Two important observations

from equation (6.6) is that by including both v̈2it and Wiv̈2t, the parameters obtained

from this estimation will be numerically the same as 2SLS.6 Second, if µ2 = 0, then

it would be enough to include only v̈2it in the estimating equation to get consistent

estimates of θ and in this scenario, they would be different than 2SLS’. Furthermore, it

6In this sense, we do not get any efficiency gains compared to 2SLS by including both terms.
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is precisely by excluding Wiv̈2it from the estimation that the CF would probably more

efficient than 2SLS in this case, as it would be using additional information from this

restriction.

From this point onward, one has to decide how to deal with the error term. One

option is to impose some structure to it and apply a Feasible GLS procedure in order

to obtain further efficiency gains. Note that this is possible because in (6.4) we have

conditioned on the whole set of exogenous variables and the weighting matrix. However,

this would not be possible if we slightly modify the model. So far we have assumed that

the model also contains spatial spillovers of the endogenous variable ẍ2it, but suppose

that for some theoretical reason, the model does not include Wiẍ2it. In this case we

could relax (6.4) to

E(üit|Zit, x2it) = E(üit|Zit, v̈2it) = E(üit|v̈2it) = µ1v̈2it (6.9)

Note that we are now conditioning only on the own control function. In this in-

stance one could still estimate the transformed model by Pooled OLS, however it would

preclude to apply a Feasible GLS procedure because the strict spatial exogeneity as-

sumption would be violated since it will involve the weighting matrix W and the error

terms of other observations.

Alternatively, the researcher can treat the error term non-parametrically and apply

the HACSC estimator proposed in this paper to obtain robust standard errors. Nev-

ertheless, in this case there’s an additional layer of complication on top of the spatio-

temporal correlation and the heteroskedasticity: by including ˆ̈v2it in the estimating

equation, we now have a generated regressor and therefore, the covariance matrix of

the parameters needs to be adjusted to take into account the sampling error induced

by the first stage estimation (i.e. we are getting estimates of ψ). Although Basile et al.

(2014) recommends to perform a bootstrap to obtain the standard errors in a CF setup,

sampling with spatially dependent data is not a trivial matter so having a formula is

useful in practice.

In this setup, the fully robust covariance matrix is

B−1MB−1 (6.10)

where

B = E
(∑N

i

∑T
t ä

′
itäit

)
.

M = Var
[∑N

i

∑T
t (z̈itψ)

′(ëit + v̈itθ)−G · rit(ψ)θ
]
= Var

[∑N
i

∑T
t mit

]
.

G = E
[∑N

i

∑T
t (z̈itψ)

′z̈it

]
rit(δ) =

(
1

NT

∑N
i

∑T
t z̈

′
itz̈it

)−1 [
(NT )−

1
2
∑N

i

∑T
t z̈

′
itv̈it

]
.
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The derivation of (6.10) can be found in the Appendix. To estimate it, we can

replace the population quantities by their sample analogues so that

B̂ = 1
NT

∑N
i

∑T
t
ˆ̈a′it

ˆ̈ait.

m̂it = (z̈itψ̂)
′(ˆ̈eit + ˆ̈vitθ̂)− Ĝ · r̂it(ψ̂)θ̂.

With these quantities calculated, the (r, s)-th element of M can be estimated as

M̂rs =
1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
l=1

ˆ̈mit,r
ˆ̈mjl,sK

[
ρ∗(i, j)

ρb

]

Note that (6.10) also has a sandwich type form, very similar to the HACSC estimator

presented earlier. Similarly, the kernel function is also used to operationalize the weak

spatial dependence assumption, however in this case the terms it multiplies (mit instead

of z̈′itüit) have a different structure to take into account the first stage sampling error.

7 Simulations

7.1 Design

To test the performance of the HACSC estimator and the CF version of it, I performed

a Monte Carlo study. In this experiment, the units of observation live in a squared

regular grid of 20×20 and the distance between two adjacent individuals is normalized

to one. To evaluate the performance of the estimator, consider the following data

generating process:

yit = β0 + x1itβ1 + x2itβ2 + x1itx2itβ3 + ci + uit

x1it = δ0 + δ1z1it + vit

ci = (I − ρW )−1
i C

uit = αvit + eit

et = (I − ρW )−1at

ait = ψai,t−1 + εit

E(x1ituit) ̸= 0,E(x2itci) ̸= 0,E(z1itci) ̸= 0

where [β0 β1 β2 β3]
′ = [2 0.7 0.6 0.3]′ and εit, and C are independent and identically

distributed random variables following normal distributions and are independent from

each other. z1it is an instrument for x1it and x2it is exogenous with respect to the error

term uit and they follow a normal and gamma distributions respectively. Note that

there is an interaction term between the endogenous and exogenous variable, for which

we have a readily available instrument, z1itx1it.

In this setup, the error term uit satisfy the CF assumption given that it depends
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linearly on the error term from the reduced-form equation, vit. The error terms e and

a follow a spatial and temporal AR(1) process respectively. The strength of the spatial

correlation is governed by the parameter ρ, while the persistence of the serial correlation

is moderated by ψ. Note also that the individual heterogeneity also follows a Spatial

AR(1) model, however, since I am going to apply the within transformation for the

estimation, its DGP does will not affect the results.

For the weighting matrix W , I used a rook-type weighting scheme so that each

observation will have between two and four pseudo-neighbors and each of those will

have an equal weight. W is row-normalized to ensure that (I − ρW ) is invertible. I

estimated the model using both FE 2SLS and the CF approach with N = 400 and T = 5

using 1,000 replications. I am interested in comparing the estimates of the coefficients

by the two methods to see if there are some efficiency gains by using the CF approach.

Furthermore, I also want to evaluate the performance of four different estimators of

the covariance matrix: the HACSC proposed in this paper, a SHAC assuming no serial

correlation, the cluster robust and the “regular” ones without any adjustment. In the

case of the CF approach, I will compare the standard errors presented in Section 6 that

account for the first stage and a HACSC that ignores the two-step procedure.

I conducted a simulation for every combination of ρ = [0, 0.3, 0.7] and ψ =

[0, 0.3, 0.7]. I used the Bartlett Kernel to perform the analysis, contrary to Kele-

jian and Prucha (2007), who used the Parzen Kernel. An important parameter in this

experiment is the threshold distance ρb at which the Kernel will assign a zero weight

for units that are apart by more than ρp. Following the recommendation of the authors

mentioned above, I set ρb = N
1
4 , i.e. the integer part of N

1
4 . At each iteration, I draw

a new set of covariates and keep it fixed across the iterations of the ρ and ψ parameters.

7.2 Results

This section describes the results of the simulations using two metrics for the estimated

coefficients: the mean and the corresponding standard deviation across the 1,000 repli-

cations for different values of ρ and ψ. Table 7.1 presents the outcomes of this experi-

ment and it shows that both estimators provided unbiased estimates of the parameters

in the sense that the average of the estimated coefficients is centered around the true

values for any combination of ρ and ψ. This is expected since in this exercise the CF

assumption is true.

However, when analyzing the standard deviations, the CF consistently shows a lower

value than 2SLS (e.g. 0.049 against 0.084 for β3 when ρ = ψ = 0.3). Figure 3 exemplifies

this finding: note that the distribution of the estimated parameters is tighter around

the true value for the CF estimates compared to 2SLS’. Therefore, whenever the CF

assumption holds, this estimator seems to be more efficient, which can be explained
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by the fact that we are using additional information when performing the estimation.

Interestingly, these efficiency gains are more evident for β1 and β3, the coefficients

associated with the endogenous variables, whereas for the coefficient of the exogenous

covariate β2, the differences between the standard deviations of both estimators are

more modest across all pairs of ρ and ψ.

Table 7.1: Average estimated coefficients and standard deviation across the 1000 replications using
a rook type weighting matrix, N=400 and T=5.

β1 β2 β3

CF 2SLS CF 2SLS CF 2SLS
ρ ψ

0.0

0.0
0.704

(0.196)

0.698

(0.294)

0.606

(0.269)

0.604

(0.283)

0.298

(0.049)

0.300

(0.089)

0.3
0.696

(0.188)

0.692

(0.269)

0.595

(0.254)

0.593

(0.272)

0.300

(0.047)

0.301

(0.080)

0.7
0.703

(0.18)

0.705

(0.266)

0.600

(0.250)

0.601

(0.265)

0.300

(0.045)

0.299

(0.079)

0.3

0.0
0.690

(0.207)

0.683

(0.301)

0.589

(0.275)

0.584

(0.299)

0.303

(0.052)

0.305

(0.090)

0.3
0.706

(0.191)

0.718

(0.281)

0.603

(0.276)

0.608

(0.294)

0.299

(0.049)

0.294

(0.084)

0.7
0.704

(0.189)

0.697

(0.288)

0.599

(0.254)

0.595

(0.282)

0.299

(0.048)

0.301

(0.085)

0.7

0.0
0.695

(0.236)

0.698

(0.330)

0.573

(0.352)

0.575

(0.371)

0.302

(0.057)

0.301

(0.095)

0.3
0.691

(0.231)

0.693

(0.334)

0.580

(0.335)

0.581

(0.360)

0.303

(0.054)

0.301

(0.095)

0.7
0.704

(0.221)

0.693

(0.309)

0.603

(0.317)

0.600

(0.336)

0.300

(0.054)

0.303

(0.089)

To analyze the performance of the HACSC estimator, I use two metrics: first the

average of the variance7 estimated for each coefficient for each pair of ρ and ψ across

the 1,000 replications and I compare it with the “true value”, which is computed as

the variance of the set of estimated coefficients for each pair of ρ and ψ across the

1,000 replications. Tables A1-A3 present this comparison and the first thing to note in

7I used the estimated variances instead of the standard errors because the non linearity of the square
root function could affect the results.
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the case of the CF is that both estimated variances, with and without the first stage

correction, are very close to the true value so at first glance, using this metric the

correction does not seem to make an impact.

For the 2SLS estimator, the differences are more substantial. The HACSC estimator

is consistently closer to the true value across all pairs of rho and psi compared to

the SHAC that imposes no serial correlation and the non-robust one. In general, the

variance estimated with the HACSC is on average larger compared to the one computed

with these two alternatives. Admittedly, in this case the cluster-robust variances are

also very close to the true value. Overall these results suggest making the standard

errors robust to spatial correlation at the expense of imposing no serial correlation can

result in unreliable inference. Furthermore, as shown in Figure A1, using the HACSC

estimator will provided standard errors that are, on average, properly centered around

the true value.

0.0 0.5 1.0 1.5

1 CF
True

0.0 0.5 1.0 1.5

2 CF

0.0 0.2 0.4 0.6

3 CF

0.0 0.5 1.0 1.5

1 2SLS

0.0 0.5 1.0 1.5

2 2SLS

0.0 0.2 0.4 0.6

3 2SLS

Figure 3: Distribution of coefficients estimated by 2SLS and the Control Function approach for
ρ = 0.3 and ψ = 0.7 using a rook type weighting matrix.

As a second method to analyze the HACSC in this setup, I tested the null hypothe-

sis H0 : β3 = 0.3 at a 5% of significance using a t-test over the 1,000 replications using

the standard errors computed with the different estimators and I obtained the rejec-

tion probabilities. Using this metric, an estimator is performs better if the rejection

probability is closer to 5%. Table 7.2 presents the results of this exercise.8

8Tables A4 and A5 show the results for H0 : β1 = 0.7 and H0 : β2 = 0.6 respectively.
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For the case of the CF approach, the rejection probabilities using the adjustment

are slightly closer to 5% compared to the estimator that ignores the first stage so in this

sense, the adjustment seems important to obtain more reliable inference if the researcher

uses the CF approach. On the other hand, if we use 2SLS to estimate the coefficients,

the HACSC estimator rejection probabilities are closer to the 5% compared to the

SHAC and non-robust standard errors, which are over rejecting the null hypothesis.

Using this metric, the cluster-robust standard errors seem to perform just as well as

the HACSC estimator.

Table 7.2: Rejection probabilities for the null hypothesis H0 : β3 = 0.3 at a 5% of significance using
a t-test over the 1,000 replications with a rook type weighting matrix, N = 400, T=5.

CF CF no1 HACSC SHAC Cluster Non-Robust
ρ ψ

0.0

0.0 0.050 0.060 0.067 0.088 0.058 0.082

0.3 0.046 0.060 0.054 0.072 0.046 0.068

0.7 0.045 0.061 0.050 0.075 0.043 0.072

0.3

0.0 0.045 0.061 0.068 0.096 0.058 0.091

0.3 0.050 0.064 0.047 0.074 0.040 0.067

0.7 0.051 0.062 0.068 0.085 0.058 0.080

0.7

0.0 0.050 0.072 0.057 0.077 0.048 0.066

0.3 0.041 0.057 0.066 0.095 0.065 0.090

0.7 0.044 0.060 0.056 0.076 0.041 0.073

CF is the HACSC estimator using the first stage correction and CF no1 refers to the HACSC

estimator ignoring the first stage estimation using a CF approach.

Overall, the results suggest that the HACSC estimator, both in the case of 2SLS and the CF

approach with the correction, provide more reliable inference compared to the existing SHAC.
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8 Empirical Application

To test the performance of the HACSC estimator with real world data, I revisit the problem

of analyzing the effect of spending on the educational outcome of fourth graders in Michigan

studied by Papke and Wooldridge (2008) using district level data from 1993 to 20019. In short,

Michigan changed the way schools were funded in 1994, going from a property-tax based system

to a statewide system, which was possible trough an increase in the sales tax and lottery profits

.

To measure the effect of spending on the academic achievement of students, the authors used

as the dependent variable the fraction of fourth-graders that passed the math test (math4it) of

the Michigan Education Assessment Program (MEAP) given that the definition of this subject

and the way it is evaluated has remained relatively constant over time. On the other hand, in

addition to the current level of spending on a student, the authors also allow for the possibility

that the level spending on the previous three years to play a role in the test scores. This is

indeed a sensible choice given that one could argue that the previous years of education lay the

foundations in the learning process of students.

The model also includes the proportion of students eligible for the free and reduced-price

lunch program (lunchit), the district enrollment (enrollit) and time dummies. More details

about the full model can be found in Papke (2005). Borrowing their notation, the estimated

model is:

math4it = θt + β1 log(avgrexpit) + β2lunchit + β3 log(enrollit) + ci1 + uit (8.1)

where avgrexpit denotes the simple average of real spending from the current and previous three

years. It is important to note that in addition to the linear probability model (LPM), Papke

and Wooldridge (2008) also estimate the model with other non linear estimators but because

they find that the LPM is a good approximation to the non linear estimates and since this

paper focuses on linear models, we will compare the results only with their LPM results.

In order to replicate their results and use the HACSC estimator, we need a distance measure

between the school districts. As mentioned in previous sections, this is not a trivial matter

when we are working with geographical units but in this case, we will work with the geographic

distance between the centroids of each district.10 However, there have been changes in the

school districts since 2001, which is why I could only use 98.6% of the original sample used

by Papke and Wooldridge (2008). The main reason for this is that some districts have merged

with others and in these cases, I used the data point of the district that absorbed the one

disappearing. Table 8.1 compares the summary statistics from the original and new data sets

and the t-tests show that there are no statistically significant differences between them.

9 I want to thank Dr. Papke and Dr. Wooldridge for kindly sharing their data set.
10 Roughly speaking, a centroid can be interpreted as the center of mass of a geometry.
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Table 8.1: Sample means (standard deviations) of the original and new data sets and corresponding
t-tests (p-values).

1995 2001

Original New t-test Original New t-test

Pass rate on fourth-grade

math test

0.62

(0.13)

0.62

(0.13)

-0.30

(0.76)

0.76

(0.13)

0.76

(0.12)

-0.43

(0.67)

Real expenditure

per pupil (2001$)
6329

(986)

6317

(978)

0.20

(0.85)

7161

(933)

7147

(916)

0.25

(0.80)

Real foundation

grant (2001$)
5962

(1031)

5959

(1035)

0.05

(0.96)

6348

(689)

6347

(692)

0.03

(0.98)

Fraction of eligible for

free and reduced lunch

0.28

(0.15)

0.28

(0.15)

0.27

(0.79)

0.31

(0.17)

0.30

(0.17)

0.34

(0.73)

Enrollment
3076

(8156)

3099

(8210)

-0.04

(0.97)

3078

(7293)

3103

(7341)

-0.05

(0.96)

Number of observations 501 494 - 501 494 -

As a first step, I estimate model (8.1) using the Fixed Effects estimator assuming that all

the independent variables are exogenous with respect to the error term uit. Table 8.2 shows the

estimates using the new data set and the ones reported by Papke and Wooldridge (2008). The

coefficient associated with the average real expenditure is virtually the same, whereas the ones

of lunch and the enrollment are negative with the new estimates. Nevertheless, the magnitudes

of the latter are small and none of them are statistically significant in the original estimation

either.

Table 8.2: Estimates assuming that all the explanatory variables are exogenous.

Original results New results Standard errors for new results with different bandwidth values

Coefficient Coefficient ρb=1 ρb=100 ρb=200 ρb=300 ρb=400 ρb=500 ρb=600

log(avgrexp)
0.377

(0.071)

0.372

(0.071)
0.070 0.072 0.067 0.066 0.066 0.063 0.058

lunch
-0.042

(0.073)

0.029

(0.064)
0.064 0.077 0.079 0.072 0.061 0.060 0.061

log(enroll)
0.002

(0.049)

-0.02

(0.048)
0.048 0.045 0.033 0.028 0.026 0.023 0.022

Number of districts 501 493 - - - - - - -

Table 8.2 also shows the standard errors computed with the HACSC estimator using differ-

ent bandwidth values. As expected and because the minimum distance between any two school

districts in the data set is 1.05 kilometers, when the bandwidth is 1 kilometer the HACSC esti-

mator is effectively treating the observations as if they have no effect on their neighbors (i.e. no

spatial correlation) and consequently the standard errors are very similar to the ones computed
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using an estimator that is robust to heteroskedasticity and serial correlation. Interestingly, as

the bandwidth increases, the standard error for each coefficients behaves differently: for the av-

erage spending, it first increases and then decreases, for enrollment it decreases monotonically

whereas for lunch, there is not an evident pattern. Note that this exercise shows that even if

the covariance matrix is robust to heteroskedasticity, spatial and serial correlation, this does

not mean that the standard errors will be necessarily larger.

One of the issues with the estimates previously discussed is that the spending from a school

district might be endogenous, mainly due to the fact that a school district might adjust its

current spending if they suspect that the (bad) performance of a cohort throughout the year will

be reflected on the pass rates of the MEAP test (Papke and Wooldridge 2008). Fortunately, the

change in the way that school districts brought with it a natural instrument: in the 1993/1994

school year, each district started to receive a per-student “foundation grant” based on the initial

funding in 1994 that sought to increase the spending per student to a baseline level and had the

effect of reducing the differences in spending between the districts across the state of Michigan

by the year of 2001 (see Figure 4). The details of why this is a suitable instrument are discussed

in Papke and Wooldridge (2008), but in broad terms, the identification assumption is that the

idiosyncratic error term has a smooth relationship with both the dependent variable and the

initial funding. On the other hand, the foundation grant depended on the initial funding in a

non-smooth way [see Table 1 in Papke and Wooldridge (2008) to see this].

Figure 4: Average real expenditure per student across the Michigan school districts in 1995 and
2001.

As a result of this concern, Papke and Wooldridge (2008) augmented the model by also

including the real spending from 1994 with interactions with the time dummies, along with the

time averages of lunch and enrollment, using as instruments the foundation grant interacted
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with the year binary variables. The new estimated model using instrumental variables is then

math4it = θt + β1 log(avgrexpit) + β2lunchit + β3 log(enrollit) (8.2)

+ β4t log(rexpppi,1994) + ξ1lunchi + ξ2log(enrolli) + vit1.

Note that because we have a single endogenous variable, in this case using Two Stage

Least Squares (2SLS) would be numerically the same as estimating the model with the control

function approach, and because of this, I used the latter. Table 8.3 shows the estimates from

this model and once again, the coefficients obtained using the new sample are very similar to

the ones computed using the original data set. In particular, the coefficient of the spending is

considerable larger than the OLS estimate, which can be explained in the context of the local

average treatment effect literature or by the fact that district authorities can decide to increase

spending whenever they think the cohort might underperform Papke and Wooldridge (2008).

Table 8.3: Estimates assuming that the spending variable is endogenous.

Original results New results Standard errors for new results with different bandwidth values

Coefficient Coefficient ρb=1 ρb=100 ρb=200 ρb=300 ρb=400 ρb=500 ρb=600

log(avgrexp)
0.555

(0.208)

0.546

(0.211)
0.221 0.265 0.292 0.253 0.221 0.202 0.187

lunch
-0.062

(0.075)

0.008

(0.067)
0.066 0.077 0.083 0.079 0.07 0.068 0.067

log(enroll)
0.046

(0.067)

0.023

(0.066)
0.069 0.075 0.079 0.071 0.065 0.058 0.054

v
-0.421

(0.232)

-0.476

(0.236)
0.250 0.349 0.411 0.383 0.365 0.357 0.353

Number of districts 501 493 - - - - - - -

Contrary to the case where all the independent variables were treated as exogenous, the

standard errors computed using the HACSC estimator when the bandwidth parameter is set to

1 kilometer are somewhat different to the ones computed using an estimator that is only robust

to serial correlation and heteroskedasticity, which is expected because the latter does not take

into account the first stage estimation. Once again this results show that the standard errors

can be larger or smaller depending on the value selected for the bandwidth.

So far I have assumed that there is only spatial correlation in the error term. However in

this scenario there could be spatial spillovers from neighboring units that could be affecting the

student performance on the math test. Figure 4 not only shows that the average real expenditure

per student increased between 1995 and 2001 in all the school districts, but it also shows the

spatial distribution of it. Note that there are districts where the surrounding neighbors have

a very similar level of spending, for example, in 1995 the Detroit region shows multiple school

districts with higher levels of expenditure compared to the rest of the state. Similarly, in Figure

5 the Upper Peninsula shows several neighboring school districts with higher passing rates than

the rest of the region.
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Figure 5: Average real expenditure per student across the Michigan school districts in 1995 and
2001.

Multiple reasons could be behind this pattern. For instance, it could be the case that

parents with students that are underperforming identify school districts that are increasing

spending and throughout the year, move to one of these districts in order to increase help their

children to improve their grades. From the labor side, school districts might need to increase

the expenditure in teachers’ salaries to avoid losing them to other school districts within a

reasonable commuting distance. All in all, it seems important to control for spillover effects of

expenditure from neighbors, so I augment the models previously estimated with this additional

variable11 and Table 8.4 shows the estimates of this regression assuming that all the independent

variables are exogenous with respect to the error term.

Table 8.4: OLS with extension

Coefficient Standard errors with different bandwidth values

(st. error) ρb=1 ρb=100 ρb=200 ρb=300 ρb=400 ρb=500 ρb=600

log(avgrexp)
0.281

(0.076)
0.076 0.077 0.071 0.067 0.065 0.061 0.056

lunch
0.030

(0.063)
0.063 0.077 0.082 0.076 0.066 0.064 0.064

log(enroll)
-0.008

(0.047)
0.047 0.044 0.035 0.03 0.028 0.025 0.024

W· log(avgrexp)
0.324

(0.090)
0.088 0.076 0.071 0.057 0.049 0.047 0.047

Number of districts 493 - - - - - - -

11For this estimation, I used a rook type weighting matrix
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Note that the coefficient on the average expenditure has decreased significantly so that an

increase of approximately 10% in spending will now lead to an increase in the pass rate of about

2.8%. On the other hand, if neighboring school districts of unit i increase their expenditure

around 10%, the pass rate in i is expected to improve around 3.2%, a larger effect than the own

spending. To address the endogeneity issue, I also augmented the model 8.2 with the spending

spillover variable using the control function approach12 and the results are shown in Table 8.5.

Once again, in this case the effect of the own expenditure is larger than in the exogenous case,

but it is smaller compared to the original estimate. The spillover effect is significantly reduced

to a marginal increase of around 0.7% in the pass rates due to an increase in the spending in

surrounding school districts and moreover, the coefficient is not statistically significant.

Overall, the difference in the magnitude of the coefficients obtained for the spending in

neighboring units make it difficult to interpret the effect of this variable. However in both cases

it was positive, which supports the hypothesis that parents may move to school districts where

the spending per student is higher. Of course, one cannot rule out the possibility that larger

spending by neighboring school districts can attract better teachers to the area that are willing

to commute, however, more detailed data may be needed to separate these effects.

Table 8.5: IV extension

Coefficient Standard errors for new results with different bandwidth values

(st. error) ρb=1 ρb=100 ρb=200 ρb=300 ρb=400 ρb=500 ρb=600

log(avgrexp)
0.408

(0.231)
0.234 0.317 0.361 0.310 0.262 0.234 0.219

lunch
0.016

(0.067)
0.066 0.078 0.087 0.082 0.074 0.072 0.071

log(enroll)
-0.001

(0.067)
0.068 0.08 0.088 0.079 0.069 0.062 0.058

W · log(avgrexp)
0.071

(0.057)
0.056 0.076 0.083 0.077 0.07 0.067 0.065

v
-0.249

(0.254)
0.260 0.379 0.435 0.385 0.346 0.328 0.318

Number of districts 493 - - - - - - -

12I used W · log(found) to instrument for W · log(avgrexp)
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9 Conclusion

In this paper, I present a simple way to obtain standard errors that are robust to heteroskedas-

ticity and both serial and spatial correlation in short panels with fixed effects and endogenous

covariates. This is important because to the best of my knowledge, the current SHAC estima-

tors do not explicitly allow for serial correlation in this context (admittedly the literature does

not ignore this issue when T → ∞). The estimator relies on averaging the moment conditions

for a single individual across time, which allows to treat the estimation like a cross sectional

problem without imposing any restrictions on the serial correlation of the residuals. This will

help empirical researchers to obtain more reliable standard errors in different fields such as

urban economics or international trade.

The proposed HACSC estimator can be directly applied in a Correlated Random Effects

framework to obtain a fully robust Hausman-type test, which can help empirical researchers to

choose between Fixed Effects and Random Effects specifications. In this paper I also showed

that the Mundlak equivalence also holds in a particular spatial setting, which will allows to

obtain the Fixed Effects coefficients of the time varying covariates in a Random Effects context.

Similarly, the HACSC estimator can be used in a RE estimation procedure, whenever the

researcher suspects that the structure imposed of the spatial error term might be misspecified.

I also presented a control function approach and the required assumptions to estimate the

parameters of the model. Although even in the i.i.d. case it is a standard practice to use

bootstrap to obtain the standard errors with this approach, in a spatial setting this is not a

trivial procedure given the dependence between observations. For this reason, I also extended

the HACSC estimator to this setup, which requires an adjustment of the covariance matrix to

take into account the sampling error of the first stage estimation.

The Monte-Carlo experiment performed showed that the HACSC estimator works well in

the presence of strong or moderate serial and spatial correlation compared to other methods

used by the literature in terms of obtaining unbiased standard errors. As expected, the estimator

also shows higher variance than such estimators, especially in settings with low spatial and/or

serial correlation. The simulations also showed that if the CF assumptions hold, we can obtain

efficiency gains compared to 2SLS.

An avenue for future research is to extend the Monte Carlo experiments in different direc-

tions. First, it would be interesting to use different weighting schemes for the weighting matrix

W based on distance or a k-neighbor scheme in an irregular lattice, as well as different kernel

functions. Analogous to the time series literature, the threshold for the distance bandwidth

most certainly plays an important role on the finite sample behavior of the estimator, so imple-

menting a data driven procedure to choose it is also a possibility to explore, particularly when

the spatial correlation is strong.
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Appendix

Assumptions

Assumption A.1

The functions gi(·, θ) satisfy these conditions:

1. gi(·, θ) are Borel measurable on Z, the σ-algebra generated by Z, for all θ ∈ Θ.

2. supN supi∈DN
E[|gi(Zi,N , θ)|2+η] <∞ ∀θ ∈ Θ for some η > 0.

Assumption A.2

The g(·, ·) satisfy the following conditions:

1. For some p ≥ 1:

lim sup
n→∞

1

|DN |
∑
i∈DN

E
[
dpi,N1(d

p
i,N > k)

]
→ 0 as k → ∞

where di,N = sup
θ∈Θ

|gi,N (Zi,N , θ)|.

2. gi(Zi,N , θ) are L0 stochastically equicontinuous.

Assumption A.3

The true parameter θ0 and the gi(·, ·) satisfy these conditions:

1. θ0 ∈ int(Θ).

2. gi(Zi, ·) is continuously differentiable on the interior of Θ.

3. |∇θgi(Zi, θ)| <∞, where ∇θ denotes the gradient of gi(Zi, θ) with respect to the param-

eter vector θ.

4. ∇θgi(Zi, θ) is Borel measurable, E[∇θgi(Zi, θ)] exists and rank {E[∇θgi(Ai, θ)]} = P ,

where P = dim(θ0).

5. E[|gi(Zi, θ0)|2+ϵ] <∞ for some ϵ > 0.

Assumption A.4

There exist finite dimensional vectors mi and ∆ such that ûi − ui = mi∆ and

1

N

N∑
i=1

||zi||2 = Op(1) and N
1
2 ||∆|| = Op(1)
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Definitions

α-mixing for random fields

Let DN be a subset of D. For U ⊆ DN and V ⊆ DN , let σn(U) = σ(Xi,N : i ∈ U), αN (U, V ) =

α(σn(U), σn(V )). Then the α-mixing coefficients for the random field {Xi,N : i ∈ DN , N ∈ N}
is defined as follows:

αk,l,N (r) = sup(αn(U, V ), |U | ≤ k, |V | ≤ l, ρ(U, V ) ≥ r)

for k, l, r, n ∈ N. Define also

ᾱk,l(r) = sup
N
αk,l,N (r)

Upper tail quantile function

Let X be a random variable. Then the upper quantile function QX : (0, 1) → [0,∞) is defined

as:

QX(u) = inf{t : P (X > t) ≤ u}

“Inverse” function of mixing coefficients

For the non-increasing sequence of the mixing coefficients {ᾱ1,1}∞m=1, set ᾱ1,1(0) = 1 and define

its “inverse” function αinv(u) : (0, 1) → N ∪ {0} as:

αinv(u) = max{m ≥ 0 : ᾱ1,1(m) > u}

Stochastic equicontinuity

The array of random functions {fi,N (Zi,N , θ) : i ∈ DN , n ≥ 1} is:

1. L0 stochastically equicontinuous on Θ iff for every ε > 0,

lim sup
N→∞

1

|DN |
∑
i∈DN

P

[
sup
θ′∈Θ

sup
θ∈B(θ′,δ)

|fi,N (Zi,N , θ)− fi,N (Zi,N , θ
′)| > ε

]
→ 0 as δ → 0.

2. Lp stochastically equicontinuous, p > 0, on Θ iff

lim sup
N→∞

1

|DN |
∑
i∈DN

E

[
sup
θ′∈Θ

sup
θ∈B(θ′,δ)

|fi,N (Zi,N , θ)− fi,N (Zi,N , θ
′)|p
]
→ 0 as δ → 0.

3. a.s. stochastically equicontinuous on Θ iff

lim sup
N→∞

1

|DN |
∑
i∈DN

sup
θ′∈Θ

sup
θ∈B(θ′,δ)

|fi,N (Zi,N , θ)− fi,N (Zi,N , θ
′)| → 0 a.s. as δ → 0.
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Proof of Proposition 5

For notation simplicity, we will assume that Wiyt is included in x2it, xit = [x1it x2it], where

the x2 are k2 + 1 endogenous variables and zit = [x1it z2it w2
1it . . . w

s
1it], where z2 is a vector

of L2 instruments for x2, with L2 ≥ k2, and similarly for the spatial variables (note however

that Wiyt is not in WiXt). Therefore, the problem is to apply Pooled 2SLS to the following

equation:

yit − ηiȳi = (xit − ηix̄i)β +Wi(Xt − ηiX̄)γ + (1− ηi)z̄iδ + (1− ηi)WiZ̄λ

= (xit − ηix̄i)β + (wit − ηiw̄i)γ + (1− ηi)z̄iδ + (1− ηi)Z̄iλ

using IV’s: [(zit − ηiz̄i) (Zit − ηiZ̄i) (1− ηi)z̄2i (1− ηi)Z̄i].

We first orthogonalize the IV’s, i.e., we run zit−ηiz̄i = (1−ηi)z̄iϵ1+(1−θi)Z̄iϵ2 and obtain

the residuals rit and Zit − ηiZ̄i = (1− ηi)z̄iϵ3 + (1− θi)Z̄iϵ4 and get the residuals sit. To do so,

we use the Frish-Waugh-Lovell theorem sequentially.

1.a) zit − ηiz̄i on (1− ηi)z̄i. The coefficient will be:

ϵ̃1 =

[
N∑
i=1

T∑
t=1

(1− ηi)
2z̄′1iz̄1i

]−1 [ N∑
i=1

T∑
t=1

(1− ηi)
2z̄′1iz̄i

]

=

[
N∑
i=1

T∑
t=1

(1− ηi)
2z̄′1iz̄1i

]−1 [∑
i

(1− ηi)z̄
′
i

∑
t

zit −
∑
i

T (1− ηi)ηiz̄
′
iz̄i

]

=

[
N∑
i=1

T (1− ηi)
2z̄′iz̄i

]−1 [ N∑
i=1

T (1− ηi)
2z̄′1iz̄1i

]

=

[
N∑
i=1

(1− ηi)
2z̄′1iz̄1i

]−1 [ N∑
i=1

(1− ηi)
2z̄′1iz̄1i

]
= IL

Therefor the residuals will be vit = zit − z̄i.

1.b) Run (1− ηi)Z̄i on (1− η)z̄. In this case the coefficient and the residuals will depend only

on the i index, call the latter fi.

1.c) Run vit on fi to get ϵ2. The coefficient will be:

ϵ2 =

[∑
i

∑
t

f ′ifi

]−1 [∑
i

∑
t

f ′ivit

]

=

[∑
i

∑
t

f ′ifi

]−1 [∑
i

f ′i
∑
t

vit

]

=

[∑
i

∑
t

f ′ifi

]−1 [∑
i

f ′i
∑
t

(zit − z̄i)

]
= 0L

where we used the fact that the sum of deviations from the mean add up to zero for all i

in the second term. This implies that ϵ1 = IL and therefore, rit = zit − z̄i.

Using very similar steps, it can be shown that if we run Zit−ηiZ̄i = (1−ηi)z̄iϵ3+(1−θi)Z̄iϵ4,
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then ϵ3 = 0L and ϵ4 = IL, and therefore the residuals of this regression will be sit = Zit − Z̄i.

Since we have orthogonalized the instrumental variables with respect to (1−η)z̄i and (1−η)Z̄i,

we now have to apply Pooled 2SLS to the following equation:

yit − ηiȳi = (xit − ηix̄i)β + (wit − ηiw̄)γ

using IV’s [(zit − z̄i) (Zit − Z̄i)]. We now define the following notation: z̈it = zit − z̄i,

Z̈it = Zit− Z̄i, ẑit = [z̈it Z̈it], ỹit = yit−ηiȳi, x̃it = [(xit−ηix̄i) (wit−ηiw̄i)], ŷit = yit− ȳi and
x̂it = [(xit − x̄i) (wit − w̄i)]. Then the Γ = (β γ) from the previous problem can be obtained

as:

Γ̂2SLS =

(∑
i

∑
t=1

x̃′itẑit

)(∑
i

∑
t=1

ẑ′itẑit

)−1(∑
i

∑
t=1

ẑ′itx̃it

)−1

·

(∑
i

∑
t=1

x̃′itẑit

)(∑
i

∑
t=1

ẑ′itẑit

)−1(∑
i

∑
t

ẑ′itỹit

)
(A.1)

The first term of the square bracket term can be rewritten as follows (the third term of that

inverse matrix can also be written in a similar way):

∑
i

∑
t

x̃′itẑit =
∑
i

∑
t

[
(xit − ηix̄i)

′

(wit − ηiw̄i)
′

] [
z̈it Z̈it

]
=
∑
i

∑
t

[
(xit − ηix̄i)

′z̈it (xit − ηix̄i)
′Z̈it

(wit − ηiw̄i)
′z̈it (wit − ηiw̄i)

′Z̈′
it

]
(A.2)

We focus on the (1,1) term, but the following algebraic manipulation holds for the rest of the

terms in the matrix and for the second term in (A.1):∑
i

∑
t

(xit − ηix̄i)
′z̈it =

∑
i

∑
t

x′itz̈it −
∑
i

ηix̄
′
i

∑
t

z̈it

=
∑
i

∑
t

x′itz̈it −
∑
i

ηix̄
′
i

∑
t

(zit − z̄i)

=
∑
i

∑
t

x′itz̈it

=
∑
i

∑
t

x′itz̈it −
∑
i

x̄′i
∑
t

(zit − z̄i)
′

=
∑
i

∑
t

(xit − x̄i)
′z̈it

where in the second and fourth lines we used the fact that the sum of deviations from the mean

over t add up to zero for all observations. Therefore, (A.2) can be rewritten as:

∑
i

∑
t

[
(xit − ηix̄i)

′z̈it (xit − ηix̄i)
′Z̈it

(wit − ηiw̄i)
′z̈it (wit − ηiw̄i)

′Z̈′
it

]
=
∑
i

∑
t

[
(xit − x̄i)

′z̈it (xit − x̄i)
′Z̈it

(wit − w̄i)
′z̈it (wit − w̄i)

′Z̈′
it

]

=
∑
i

∑
t

x̂′itẑit
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Similarly, ∑
i

∑
t

ẑ′itỹit =
∑
i

∑
t

ẑ′itŷit

Therefore,

Γ̂2SLS =

(∑
i

∑
t=1

x̃′itẑit

)(∑
i

∑
t=1

ẑ′itẑit

)−1(∑
i

∑
t=1

ẑ′itx̃it

)−1

·

(∑
i

∑
t=1

x̃′itẑit

)(∑
i

∑
t=1

ẑ′itẑit

)−1(∑
i

∑
t

ẑ′itỹit

)

=

(∑
i

∑
t=1

x̂′itẑit

)(∑
i

∑
t=1

ẑ′itẑit

)−1(∑
i

∑
t=1

ẑ′itx̂it

)−1

·

(∑
i

∑
t=1

x̂′itẑit

)(∑
i

∑
t=1

ẑ′itẑit

)−1(∑
i

∑
t

ẑ′itŷit

)
=Γ̂FE2SLS
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Proof of Proposition 6

For notation simplicity and without loss of generality, I will omit Wiyt in the proof. This

term can be treated as an additional endogenous variable included in x2it with its respective

instruments [w2
1it . . . w

s
1it]. Let xit = (x1it x2it), where x1it is a 1 × k1 vector of exogenous

variables and x2it is a 1× k2 vector of endogenous covariates.

Similarly, Xt = (X1t X2t), zit = (x1it z2it), z̄i = (x̄1i z̄2i), Zt = (X1t Z2t) and

Z̄t = (X̄1 Z̄2), Z2it =WiZ2it, Z̄2i =WiZ̄2.

Finally denote x̂it = (x1it x̂2it), ˆ̄xi = (x̄1i ˆ̄x2i),
ˆ̄X = (X̄1

ˆ̄X2), where the hats denote

the linear projections of x2 on (x1 z2) and their spatial lags.

In a spatial setting, (β γ)FE2SLS can be obtained by applying Pooled 2SLS to

yit − ȳi = (x1it − x̄1i)β1 + (x2it − x̄2i)β2 +Wi(X1t − X̄1)γ1 +Wi(X2t − X̄2)γ2 + (uit − ui)

using IV’s: [(z2it − z̄2i) Wi(Z2t − Z̄2)]

We want to show that applying Pooled 2SLS to:

yit − θiȳi = (x1it − θix̄1i)β1 + (x2it − θix̄2i)β2 +Wi(X1t − θiX̄1)γ1 +Wi(X2t − θiX̄2)γ2

+ (1− θi)x̄1iδ1 + (1− θi)x̄2iδ2 + (1− θi)W̄iX̄1λ1 + (1− θi)W̄iX̄2λ2 + uit

using IV’s: [(z2it − θiz̄2i) Wi(Z2t − θiZ̄2) (1− θi)z̄2i (1− θi)WiZ̄2] yields the same (β γ).

In order to proof the result, I will follow these steps:

1. Orthogonalize with respect to [(1 − θi)x̄1i (1 − θi)w̄1i] the instrumental variables and

[(x1it − θix̄1i) (w1it − θiw̄1i)]

2. Orthogonalize with respect to [(1− θi)z̄2i (1− θi)Z̄2i] in the first stage equation.

3. Show that we get the same predicted values using the orthogonalized variables and the

original ones.

4. Use the Frisch-Waugh-Lovell (WFL) theorem to show the equivalence.

So the model is:

yit − θiȳi = (x1it − θix̄1i)β1 + (x2it − θix̄2i)β2 + (w1it − θiw̄i1)γ1 + (w2it − θiw̄i2)γ2

+ (1− θi)x̄1iδ1 + (1− θi)x̄2iδ2 + (1− θi)w̄i1λ1 + (1− θi)w̄i2λ2 + uit

using IV’s: [(z2it − θiz̄2i) (Z2it − θiZ̄2i) (1− θi)z̄2i (1− θi)Z̄2i].

Step 1

a. z2it − θiz̄2i on (1− θi)x̄1i, (1− θi)w̄1i

The residuals will be: z2it − θiz̄2i − (1− θi)x̄1iη̂1 − (1− θi)w̄1iη̂2 = lit
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Applying the FWL theorem: for (1− θi)x̄1i on (1− θi)w̄1i, the coefficient will be:

µ̂1 =

[
N∑
i=1

T∑
t=1

(1− θi)
2w̄′

1iw̄1i

]−1 [ N∑
i=1

T∑
t=1

(1− θi)
2w̄′

1ix̄1i

]

=

[
N∑
i=1

T (1− θi)
2w̄′

1iw̄1i

]−1 [ N∑
i=1

T (1− θi)
2w̄′

1ix̄1i

]

=

[
N∑
i=1

(1− θi)
2w̄′

1iw̄1i

]−1 [ N∑
i=1

(1− θi)
2w̄′

1ix̄1i

]

The residuals will be (1− θi)x̄1i − (1− θi)w̄1iµ̂1 = si.

Now we regress z2it − θiz̄2i on (1− θi)w̄1i. The coefficient will be:

µ̂2 =

[
N∑
i=1

T∑
t=1

(1− θi)
2w̄′

1iw̄1i

]−1 [ N∑
i=1

T∑
t=1

(1− θi)
2w̄′

1i(z2it − θiz̄2i)

]

=

[
N∑
i=1

T (1− θi)
2w̄′

1iw̄1i

]−1 [ N∑
i=1

(1− θi)
2w̄′

1i

T∑
t=1

(z2it − θiz̄2i)

]

=

[
N∑
i=1

T (1− θi)
2w̄′

1iw̄1i

]−1 [ N∑
i=1

(1− θi)
2w̄′

1i{T × (z̄2i − θiz̄2i)}

]

=

[
N∑
i=1

(1− θi)
2w̄′

1iw̄1i

]−1 [ N∑
i=1

(1− θi)
2w̄′

1iz̄2i

]

The residuals will be z2it − θiz̄2i − (1− θi)w̄1iµ̂2 = git.

Finally, we run git on si. The coefficient will be:

η̂1 =

[
N∑
i=1

T∑
t=1

s′isi

]−1 [ N∑
i=1

T∑
t=1

s′igit

]

=

[
N∑
i=1

T × s′isi

]−1 [ N∑
i=1

s′i

T∑
t=1

git

]

=

[
N∑
i=1

T × s′isi

]−1 [ N∑
i=1

T × s′iḡi

]

=

[
N∑
i=1

s′isi

]−1 [ N∑
i=1

(1− θi)s
′
i(z̄2i − w̄1iµ̂2)

]

Using similar steps, η̂2 will be:

η̂2 =

[
N∑
i=1

s∗i
′s∗i

]−1 [ N∑
i=1

(1− θi)s
∗
i
′(z̄2i − x̄1iµ̂

∗
2)

]

where µ̂∗
2 is the coefficient of regressing z2it − θiz̄2i on (1− θi)x̄1i and s

∗
i are the residuals

of regressing (1− θi)w̄1i on (1− θi)x̄1i

b. (Z2it − θiZ̄2i) on (1− θi)x̄1i, (1− θi)w̄1i.
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The residuals will be (Z2it − θiZ̄2i)− (1− θi)x̄1iη̂3 − (1− θi)w̄1iη̂4 = mit.

c. (1− θi)z̄2i on (1− θi)x̄1i, (1− θi)w̄i.

The residuals are: (1− θi)z̄i − (1− θi)η̂5 − (1− θ)w̄1iη̂6 = vi, which only depend on the i

subscript.

Applying the FWL theorem, regressing (1 − θ)x̄1i on (1 − θi)w̄1i yields µ̂1, the same as

in step 1a. The residuals will be only a function of the i subscript, say fi.

Finally, run fi on si and the coefficient will be:[∑
i=1

Ts′isi

]−1 [∑
i=1

Ts′ifi

]
=

[∑
i=1

Ts′isi

]−1 [∑
i=1

s′i(1− θi)(z̄2i − w̄1iµ̂2)

]
= η̂5 = η̂1

The same coefficient as above. Following similar steps, it can be shown that

η̂6 = η̂2 =

[∑
i=1

Ts∗′i s
∗
i

][∑
i=1

s∗′i (1− θi)(z̄2i − x̄1iµ̂
∗
2)

]

where µ̂∗
2 is defined in step 1a.

∴ vi = (1−θi)z̄2i− (1−θi)x̄1iη̂5− (1−θi)w̄1iη̂6 = (1−θi)z̄2i− (1−θi)x̄1iη̂1− (1−θi)w̄1iη̂2

d. (1− θi)z̄2i on (1− θi)x̄1i, (1− θi)w̄1i

The coefficients will only depend in i, denote them by ri. If (1− θi)z̄2i = (1− θi)x̄1iη̂7 +

(1 − θi)w̄1iη̂8, it can be shown using similar arguments than in the previous step that

η̂7 = η̂3 and η̂8 = η̂4.

e. x1it − θix̄1i on (1− θi)x̄1i, (1− θi)w̄1i

We can apply the FWL theorem to get the coefficients:

i. First if we regress x1it − θix̄1i on (1− θi)x̄1i. The coefficient is:[∑
i

∑
t

(1− θi)
2x̄′1ix̄1i

]−1 [∑
i

∑
t

(1− θi)x̄
′
1i(x1it − θix̄1i)

]

=

[∑
i

T (1− θi)
2x̄′1ix̄1i

]−1 [∑
i

(1− θi)x̄
′
1i

∑
t

(x1it − θix̄1i)

]

=

[∑
i

T (1− θi)
2x̄′1ix̄1i

]−1 [∑
i

(1− θi)x̄
′
1iT (x̄it − θix̄1i)

]

=

[∑
i

T (1− θi)
2x̄′1ix̄1i

]−1 [∑
i

T (1− θi)
2x̄′1ix̄1i

]
=Ik1

where Ik1
denotes an identity matrix of size k1. Therefore, the residuals will be

x1it − x̄1i.

ii. Now regress (1− θi)w̄1i on (1− θi)x̄1i.

The coefficients and residuals will only depend on i. Denote the later by di.
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iii. Finally regress x1it − x̄1i on di. The coefficient will be:[∑
i

∑
t

d′idi

]−1 [∑
i

∑
t

d′i(x1it − x̄1i)

]

=

[∑
i

∑
t

d′idi

]−1 [∑
i

d′i
∑
t

(x1it − x̄1i)

]
= 0k1

where we used the fact that
∑

t(x1it − x̄1i) = 0. Therefore x1it − θix̄1i = (1− θi)x̄1iIk1
+

(1− θi)w̄1i0k1
and the residuals will be x1it − x̄1i.

f. w1it − θiw̄1i on (1− θi)x̄1i and (1− θi)w̄1i.

Applying the FWL theorem in a similar way than the previous step, we get the following

relationship:

w1it − θiw̄1i = (1− θi)x̄1i0k1 + (1− θi)w̄1iIk1 and the residuals will be w1it − w̄1i.

Therefore, after orthogonalizing, we can apply Pooled 2SLS to:

yit − θiȳi = (x1it − x̄1i)β1 + (x2it − θix̄2i)β2 + (w1it − w̄i1)γ1 + (w2it − θiw̄i2)γ2

+ (1− θi)x̄2iδ2 + (1− θi)w̄i2λ2 + uit

using IV’s: [lit mit vi ri].

Step 2

In this step we orthogonalize with respect to vi and ri in the first stage equation. Note that these

are the residuals from the previous step associated with (1− θi)z̄2i and (1− θi)Z̄2i respectively,

the instrumental variables.

a. lit = viζ1 + riζ2 + ε1.

i. lit on vi. The coefficient will be:

η̃1 =

[∑
i

∑
t

v′ivi

]−1 [∑
i

∑
t

v′ilit

]

=

[∑
i

Tv′ivi

]−1 [∑
i

v′i
∑
t

lit

]

=

[∑
i

v′ivi

]−1 [∑
i

v′i l̄i

]

Note that lit = z2it − θiz̄2i − (1− θi)x̄1iη̂1 − (1− θi)w̄1iη̂2, therefore

l̄i =
1

T

∑
t

[z2it − θiz̄2i − (1− θi)x̄1iη̂1 − (1− θi)w̄1iη̂2]

= (1− θi)z̄2i − (1− θi)x̄1iη̂1 − (1− θi)w̄1iη̂2

= (1− θi)(z̄2i − x̄1iη̂1 − w̄1iη̂2) = vi

Therefore, η̃1 = Il since η̂1 = η̂5 and η̂2 = η̂6. The residuals are z2it − z̄2i.
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ii. ri on vi. In this case, both the coefficient and the residuals are going to depend only

on i, call them hi.

iii. Regress z2it − z̄2i on hi. The coefficient is:

η̂3 =

[∑
i

∑
t

h′ihi

]−1 [∑
i

∑
t

h′i(z2it − z̄2i)

]

=

[∑
i

∑
t

h′ihi

]−1 [∑
i

h′i
∑
t

(z2it − z̄2i)

]
= 0l

Because the sum of deviations from the mean add up to zero. Therefore lit =

viIl + ri0l + ε and the residuals will be z2it − z̄2i.

b. mit = viπ1 + riπ2 + ε2

i. mit on ri

The coefficient will be, after some algebra, π̃2 = [
∑

i r
′
iri]

−1
[
∑

i r
′
im̄i]. Noting that

m̄i =
1

T

∑
t

[
(Z2it − θiZ̄2i)− (1− θi)x̄1iη̂3 − (1− θi)w̄1iη̂4

]
= (1− θi)(Z̄2i − x̄1iη̂3 − w̄1iη̂4)

= (1− θi)(Z̄2i − x̄1iη̂7 − w̄1iη̂8) = ri

We conclude that π̃2 = Il and the residuals are Z2it − Z̄2i.

ii. vi on ri. The coefficient will be denoted by π̃1 = [
∑

i r
′
iri]

−1
[
∑

i r
′
ivi], and the

residuals will depend on i, call them h̃i.

iii. Z2it − Z̄2i on h̃i.

Using again the fact that
∑

t Z2it− Z̄2i = 0, we conclude that π1 = 0l, which implies

that π̃2 = π2 = Il and therefore, the residuals will be Z2it − Z̄2i.

In the original first stage we have:

x2it − θix̄2it = (x1it − θix̄1i)ϕ1 + (w1it − θiw̄1i)ϕ2 + (Z2it − θiZ̄2i)ϕ3 + (w2it − θiw̄i2)ϕ4

+ (1− θi)x̄1iρ1 + (1− θi)w̄1iρ2 + (1− θi)z̄2iρ3 + (1− θi)Z̄2iρ4 + εFS

After orthogonalizing with respect to [(1 − θi)x̄1i (1 − θi)w̄1i (1 − θi)z̄2i (1 − θi)Z̄2i], to

get Φ = (ϕ1 ϕ2 ϕ3 ϕ4), we have to regress

x2it − θix̄2it on [(x2it − x̄2it) (x1it − x̄1i) (w1it − w̄1i) (Z2it − Z̄2i)].
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We note that if zit = [x1it w1it z2it Z2it], then the coefficient of x2it − θix̄2it on zit − z̄i is

Φ̌ =

[∑
i

∑
t

(zit − z̄i)
′(zit − z̄i)

]−1 [∑
i

∑
t

(zit − z̄i)
′(x2it − θix̄2i)

]

=

[∑
i

∑
t

(zit − z̄i)
′(zit − z̄i)

]−1 [∑
i

∑
t

(zit − z̄i)
′x2it −

∑
i

{∑
t

(zit − z̄i)
′

}
θix̄2i

]

=

[∑
i

∑
t

(zit − z̄i)
′(zit − z̄i)

]−1 [∑
i

∑
t

(zit − z̄i)
′x2it −

∑
i

{∑
t

(zit − z̄i)
′

}
x̄2i

]

=

[∑
i

∑
t

(zit − z̄i)
′(zit − z̄i)

]−1 [∑
i

∑
t

(zit − z̄i)
′(x2it − x̄2i)

]

Where we used the fact that the terms in curly brackets are zero. Therefore, Φ can also be

obtained by regressing (x2it − x̄2it) on [(x2it − x̄2it) (x1it − x̄1i) (w1it − w̄1i) (Z2it − Z̄2i)].

Step 3

In this step we show that ̂x2it − θix̄2i = ˜x2it − θix̄2i, where

̂x2it − θix̄2i = (x1it − θix̄1i)ϕ̂1 + (w1it − θiw̄1i)ϕ̂2 + (z2it − θiz̄2i)ϕ̂3 + (Z2it − θiZ̄2i)ϕ̂4

+ (1− θi)x̄1iρ̂1 + (1− θi)w̄1iρ̂2 + (1− θi)z̄2iρ̂3 + (1− θi)Z̄2iρ̂4

˜x2it − θix̄2i = (x1it − x̄1i)ϕ̃1 + (w1it − w̄1i)ϕ̃2 + (z2it − z̄2i)ϕ̃3 + (Z2it − Z̄2i)ϕ̃4

+ (1− θi)x̄1iρ̃1 + (1− θi)w̄1iρ̃2 + (1− θi)z̄2iρ̃3 + (1− θi)Z̄2iρ̃4

First we note that ϕ̂j = ϕ̃j for j = 1, 2, 3, 4 because in the second equation the respective

explanatory variables are orthogonalized with respect to the terms related to the time averages

of the independent variables. Given this fact and after some algebra, we have that ̂x2it − θix̄2i =

˜x2it − θix̄2i if ϕ̂j + ρ̂j = ρ̃j for j = 1, 2, 3, 4.

To show that the previous equality holds, we start with ˜x2it − θix̄2i. Because zit = [x1it w1it z2it Z2it]

as above, we have

zit − z̄i =
[
(x1it − x̄1i) (w1it − w̄1i) (z2it − z̄2i) (Z2it − Z̄2i)

]
, ρ̃ = (ρ̃′1 ρ̃′2 ρ̃′3 ρ̃′4)

′ and

ϕ̃ = (ϕ̃′1 ϕ̃′2 ϕ̃′3 ϕ̃′4)
′, therefore, ˜x2it − θix̄2i = (zit − z̄i)ϕ̂ + (1 − θi)z̄iρ̃. Greene (2007)

shows that given ϕ̂, one can get ρ̃ as:

ρ̃ =

[∑
i

∑
t

(1− θi)
2z̄′iz̄i

]−1 [∑
i

∑
t

(1− θi)z̄
′
i

{
x2it − θix̄2i − (zit − z̄i)ϕ̂

}]

=

[∑
i

T (1− θi)
2z̄′iz̄i

]−1 [∑
i

(
(1− θi)z̄

′
i

∑
t

(x2it − θix̄2i)− (1− θi)z̄
′
i

{∑
t

(zit − z̄i)

}
ϕ̂

)]

=

[∑
i

(1− θi)
2z̄′iz̄i

]−1 [∑
i

(1− θi)
2z̄′ix̄2i

]

where we used the fact that
∑

t(zit − z̄i) = 0 on the second line.
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We turn now to ̂x2it − θix̄2i. With similar definitions as above, given ϕ̂, we get ρ̂ as:

ρ̂ =

[∑
i

∑
t

(1− θi)
2z̄′iz̄i

]−1 [∑
i

∑
t

(1− θi)z̄
′
i

{
(x2it − θix̄2i)− (zit − θiz̄i)ϕ̂

}]

=

[∑
i

∑
t

(1− θi)
2z̄′iz̄i

]−1 [∑
i

(1− θi)z̄
′
i

{∑
t

(x2it − θix̄2i)−
∑
t

(zit − θiz̄i)ϕ̂

}]

=

[∑
i

T (1− θi)
2z̄′iz̄i

]−1 [∑
i

T (1− θi)
2z̄′ix̄2i

]

−

[∑
i

T (1− θi)
2z̄′iz̄i

]−1 [∑
i

(1− θi)z̄i(T z̄i − Tθiz̄i)ϕ̂

]

= ρ̃−

[∑
i

T (1− θi)
2z̄′iz̄i

]−1 [∑
i

T (1− θi)
2z̄′iz̄i

]
ϕ̂

= ρ̃− I2(k1+l)+1ϕ̂ = ρ̃− ϕ̂

Therefore, ρ̃ = ρ̂+ ϕ̂ and hence ̂x2it − θix̄2i = ˜x2it − θix̄2i.

In a similar way and using obvious notation, it can be shown that

̂w2it − θiw̄2i = ˜w2it − θiw̄2i.

Step 4

Given the previous step, the problem becomes:

yit − θiȳi = (x1it − x̄1i)β1 + (x2it − θix̄2i)β2 + (w1it − w̄i1)γ1 + (w2it − θiw̄i2)γ2

+ (1− θi)x̄2iδ2 + (1− θi)w̄i2λ2 + uit

using IV’s: [(z2it − z̄2i) (Z2it − Z̄2i) (1 − θi)z̄2i (1 − θi)Z̄2i]. At this point however, it is

important to note that although we have orthogonalized with respect to (1− θi)[x̄1i w̄1i], we

still have to include in the first stage equation to obtain the predicted values of the endogenous

variables. Given this, the second stage equation is:

yit − θiȳi = (x1it − x̄1i)β1 + (x̂2it − θi ˆ̄x2i)β2 + (w1it − w̄i1)γ1 + (ŵ2it − θi ˆ̄wi2)γ2

+ (1− θi)ˆ̄x2iδ2 + (1− θi) ˆ̄wi2λ2

where the ˆ denote the first stage projections on the instrumental variables. To obtain (β γ),

we orthogonalize with respect to (1− θi)ˆ̄x2i and (1− θi) ˆ̄wi2.

a. (x1it − x̄1i) on (1− θi)ˆ̄x2i and (1− θi) ˆ̄wi2.

i. (x1it − x̄1i) on (1− θi)ˆ̄x2i. The coefficient will be:[∑
i

∑
t

(1− θi)
2 ˆ̄x′2i ˆ̄x2i

]−1 [∑
i

(1− θi)ˆ̄x
′
2i

∑
t

(x1it − x̄1i)

]
= 0k2

where we used that the sums of deviations from the mean are zero for all i and the

residuals will be x1it − x̄1i.
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ii. (1− θi) ˆ̄wi2 on (1− θi)ˆ̄x2i. In this case the coefficients and the residuals will depend

only on i, call them ũi.

iii. x1it − x̄1i on ũi. By a similar argument to point i just above, the coefficient is 0k2

and so, x1it − x̄1i is orthogonal to both variables.

b . (w1it − w̄1i) on (1 − θi)ˆ̄x2i and (1 − θi) ˆ̄wi2. Using a similar argument as in a) above,

w1it − w̄1i is orthogonal to both variables.

c. (x̂2it − θi ˆ̄x2i) on (1− θi)ˆ̄x2i and (1− θi) ˆ̄wi2.

i. (1− θi) ˆ̄w2i on (1− θi)ˆ̄x2i. The coefficient and residuals depend only on i, call them

ǔi.

ii. (x̂2it − θi ˆ̄x2i) on (1 − θi)ˆ̄x2i. By arguments very similar to previous steps, one can

show that the coefficient is Ik2
and the residuals will be (x̂2it − ˆ̄x2i).

iii. (x̂2it− ˆ̄x2i) on ǔi. By analogous arguments as above, the coefficient of this regression

will be 0k2 .

Therefore, the residuals of this regression will be (x̂2it − ˆ̄x2i)

d. ŵ2it−θi ˆ̄wi2 on (1−θi)ˆ̄x2i and (1−θi) ˆ̄wi2. Using similar ideas as in c) above, the residuals

of this regression are ŵ2it − ˆ̄wi2.

Therefore, to find (β1 β2 γ1 γ2), we run

yit − θiȳi = (x1it − x̄1i)β1 + (x̂2it − ˆ̄x2i)β2 + (w1it − w̄i1)γ1 + (ŵ2it − ˆ̄wi2)γ2

If we collect all the covariates of this regression into a vector x̂it − ˆ̄xi (where the x1it and w1it

are their own projections), then:

(β γ) =

[∑
i

∑
t

(x̂it − ˆ̄xi)
′(x̂it − ˆ̄xi)

]−1 [∑
i

∑
t

(x̂it − ˆ̄xi)
′(yit − θiȳi)

]

=

[∑
i

∑
t

(x̂it − ˆ̄xi)
′(x̂it − ˆ̄xi)

]−1 [∑
i

∑
t

(x̂it − ˆ̄xi)
′yit −

∑
i

{∑
t

(x̂it − ˆ̄xi)

}
θiȳi

]

=

[∑
i

∑
t

(x̂it − ˆ̄xi)
′(x̂it − ˆ̄xi)

]−1 [∑
i

∑
t

(x̂it − ˆ̄xi)
′(yit − ȳi)

]

where we use again the fact that the term in curly brackets in the second line is zero. Therefore,

(β γ) can be obtained by regressing

yit − ȳi on
[
(x1it − x̄1i) ̂(x2it − x̄2i) (w1it − w̄1i) ̂(w2it − w̄2i)

]
,

which is exactly the same problem that the Fixed Effects 2SLS estimator solves.

Derivation of the covariance matrix under a control func-

tion approach

Consider the estimating equation in (6.8):

ÿit = ˆ̈aitθ + ëit
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where we can write äit = z̈itψ + v̈it. Because every element in äit is exogenous with respect to

the error term ëit, we can write:

θ̂ =

[
1

NT

N∑
i

T∑
t

ˆ̈a′itˆ̈ait

]−1 [
1

NT

N∑
i

T∑
t

ˆ̈a′itÿit

]

=

[
1

NT

N∑
i

T∑
t

ˆ̈a′itˆ̈ait

]−1 [
1

NT

N∑
i

T∑
t

ˆ̈a′it(äitθ + eit)

]

=

[
1

NT

N∑
i

T∑
t

ˆ̈a′itˆ̈ait

]−1 [
1

NT

N∑
i

T∑
t

ˆ̈a′it(äitθ + ˆ̈aitθ − ˆ̈aitθ + ëit)

]

=⇒
√
NT (θ̂ − θ) =

[
1

NT

N∑
i

T∑
t

ˆ̈a′itˆ̈ait

]−1
(NT )−

1
2

N∑
i

T∑
t

ˆ̈a′it

(äit − ˆ̈ait)θ︸ ︷︷ ︸
Part 2

+ ëit︸︷︷︸
Part 1


Note that because ψ̂

p→ ψ, the first matrix on the right hand side will converge in probability

to E
(∑N

i

∑T
t ä

′
itäit

)
= B. Consider now Part 1:

(NT )−
1
2

N∑
i

T∑
t

ˆ̈a′itëit = (NT )−
1
2

N∑
i

T∑
t

(z̈itψ̂)
′ëit

= (NT )−
1
2

N∑
i

T∑
t

(z̈itψ̂ + z̈itψ − z̈itψ)
′ëit

= (NT )−
1
2

N∑
i

T∑
t

(z̈itψ)
′ëit +

1

NT

N∑
i

T∑
t

[
z̈it

√
NT (ψ̂ − ψ)

]′
ëit

= (NT )−
1
2

N∑
i

T∑
t

(z̈itψ)
′ëit +

√
NT (ψ̂ − ψ)′︸ ︷︷ ︸

Op(1)

· 1

NT

N∑
i

T∑
t

z̈′itëit︸ ︷︷ ︸
op(1)

Because Op(1) · op(1) = op(1), Part 1 converges to
[
(NT )−

1
2

∑N
i

∑T
t (z̈itψ)

′ëit

]
. Now consider

Part 2:

(NT )−
1
2

N∑
i

T∑
t

ˆ̈a′it(äit − ˆ̈ait)θ = (NT )−
1
2

N∑
i

T∑
t

(z̈itψ̂)
′[äit − z̈itψ̂]θ

= (NT )−
1
2

N∑
i

T∑
t

(z̈itψ̂)
′[äit − z̈itψ + z̈itψ − z̈itψ̂]θ

= (NT )−
1
2

N∑
i

T∑
t

(z̈itψ̂)
′vitθ︸ ︷︷ ︸

Part 2.1

− (z̈itψ̂)
′z̈it(ψ̂ − ψ)θ︸ ︷︷ ︸
Part 2.2
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Starting with Part 2.1:

(NT )−
1
2

N∑
i

T∑
t

(z̈itψ̂)
′vitθ = (NT )−

1
2

N∑
i

T∑
t

(z̈itψ + z̈itψ̂ − z̈itψ)
′vitθ

= (NT )−
1
2

N∑
i

T∑
t

(z̈itψ)
′vitθ +

[
z̈it(ψ̂ − ψ)

]′
vitθ

= (NT )−
1
2

[
N∑
i

T∑
t

(z̈itψ)
′vitθ

]
+

√
NT (ψ̂ − ψ)′︸ ︷︷ ︸

Op(1)

1

NT

N∑
i

T∑
t

z̈′itv̈itθ︸ ︷︷ ︸
p→E(z̈′

itv̈it)=0

So in the last line we have Op(1) · op(1) = op(1) and therefore the last term will vanish as

N → ∞ and only (NT )−
1
2

∑N
i

∑T
t (z̈itψ)

′vitθ will remain. Using similar algebra, it can be

shown that part 2.2 will converge to

− 1

NT

N∑
i

T∑
t

(z̈itψ)
′z̈it

√
NT (ψ̂ − ψ)θ

Note that ψ̂ − ψ =

(
N∑
i

T∑
t

z̈′itz̈it

)−1( N∑
i

T∑
t

z̈′itv̈it

)

=⇒
√
NT (ψ̂ − ψ) =

(
1

NT

N∑
i

T∑
t

z̈′itz̈it

)−1 [
(NT )−

1
2

N∑
i

T∑
t

z̈′itv̈it

]

Putting everything together we have[
1

NT

N∑
i

T∑
t

ˆ̈a′itˆ̈ait

]−1{
(NT )−

1
2

N∑
i

T∑
t

ˆ̈a′it

[
(äit − ˆ̈ait)θ + ëit

]}

=B−1

{
(NT )−

1
2

N∑
i

T∑
t

(z̈itψ)
′
[
ëit + v̈itθ − z̈it(ψ̂ − ψ)θ

]}
+ op(1)

=B−1

{
(NT )−

1
2

[
N∑
i

T∑
t

{(z̈itψ)′(ëit + v̈itθ)}

]
− 1

NT

N∑
i

T∑
t

{(z̈itψ)′z̈it}
√
NT (ψ̂ − ψ)θ

}
+ op(1)

where
√
NT (ψ̂ − ψ) =

(
1

NT

∑N
i

∑T
t z̈

′
itz̈it

)−1 [
(NT )−

1
2

∑N
i

∑T
t z̈

′
itv̈it

]
.

Let

G = E

[
N∑
i

T∑
t

(z̈itψ)
′z̈it

]
and

rit(ψ) =

(
1

NT

N∑
i

T∑
t

z̈′itz̈it

)−1 [
(NT )−

1
2

N∑
i

T∑
t

z̈′itv̈it

]
Then we can write

√
NT (θ̂ − θ) = B−1

{
(NT )−

1
2

N∑
i

T∑
t

(z̈itψ)
′(ëit + v̈itθ)−G · rit(ψ)θ

}
+ op(1)
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And therefore, by the Central Limit Theorem,

√
NT (θ̂ − θ)

a∼ N
{
0, B−1MB−1

}
where M = Var

[∑N
i

∑T
t (z̈itψ)

′(ëit + v̈itθ)−G · rit(ψ)θ
]
= Var

[∑N
i

∑T
t mit

]
.

B can be estimated with

B̂ =
1

NT

N∑
i

T∑
t

ˆ̈a′itˆ̈ait

To estimate M , let

m̂it = (z̈itψ̂)
′(ˆ̈eit + ˆ̈vitθ̂)− Ĝ · r̂it(ψ̂)θ̂

where,

ˆ̈eit are the residuals from the second stage.

ˆ̈vit are the residuals from the first stage (note that vit is a vector).

Ĝ = 1
NT

∑N
i

∑T
t (z̈itψ̂)

′z̈it.

r̂(ψ̂) =
(

1
NT

∑N
i

∑T
t z̈

′
itz̈it

)−1 [
(NT )−

1
2

∑N
i

∑T
t z̈

′
it
ˆ̈vit

]
.

With these quantities defined, the (r, s)-th element of M can be estimated as

M̂rs =
1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
l=1

ˆ̈mit,r
ˆ̈mjl,sK

[
ρ∗(i, j)

ρb

]

where once again the kernel function K(·) is operationalizing the weak spatial dependence

assumption.
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Additional Simulation Results

Table A1: Average of the estimated variance of β1 over the 1,000 replications using a rook type
weighting matrix, N = 400, T=5.

CF CF no1 True value

CF

HACSC SHAC Cluster Non-Robust True value

2SLSρ ψ

0.0

0.0 0.041 0.037 0.0386 0.082 0.068 0.086 0.069 0.0866

0.3 0.037 0.034 0.0352 0.076 0.062 0.078 0.063 0.0726

0.7 0.035 0.032 0.0323 0.071 0.058 0.073 0.059 0.0706

0.3

0.0 0.043 0.039 0.0428 0.087 0.071 0.089 0.072 0.0906

0.3 0.040 0.036 0.0364 0.079 0.065 0.082 0.066 0.079

0.7 0.037 0.033 0.0359 0.074 0.061 0.076 0.062 0.0829

0.7

0.0 0.062 0.055 0.0558 0.111 0.091 0.115 0.092 0.1092

0.3 0.057 0.051 0.0535 0.103 0.085 0.106 0.085 0.1118

0.7 0.054 0.048 0.0488 0.096 0.079 0.099 0.080 0.0954
∗True value computed as the variance of β1 across the 1,000 replications.

All the numbers were multiplied by 100 for readability.

Table A2: Average of the estimated variance of β2 over the 1,000 replications using a rook type
weighting matrix, N = 400, T=5.

CF CF no1 True value

CF

HACSC SHAC Cluster Non-Robust True value

2SLSρ ψ

0.0

0.0 0.069 0.066 0.0724 0.080 0.066 0.083 0.067 0.0803

0.3 0.063 0.060 0.0644 0.074 0.061 0.076 0.061 0.0738

0.7 0.060 0.057 0.0623 0.069 0.056 0.071 0.057 0.0704

0.3

0.0 0.074 0.071 0.0756 0.086 0.070 0.089 0.071 0.0894

0.3 0.068 0.065 0.0761 0.078 0.065 0.081 0.065 0.0862

0.7 0.063 0.060 0.0646 0.073 0.061 0.076 0.061 0.0793

0.7

0.0 0.119 0.114 0.1237 0.131 0.108 0.136 0.109 0.1376

0.3 0.108 0.104 0.1125 0.120 0.099 0.125 0.100 0.1297

0.7 0.101 0.097 0.1004 0.113 0.093 0.116 0.094 0.113
∗True value computed as the variance of β2 across the 1,000 replications.

All the numbers were multiplied by 100 for readability.
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Table A3: Average of the estimated variance of β3 over the 1,000 replications using a rook type
weighting matrix, N = 400, T=5.

CF CF no1 True value

CF

HACSC SHAC Cluster Non-Robust True value

2SLSρ ψ

0.0

0.0 0.275 0.242 0.24 0.742 0.615 0.772 0.620 0.79

0.3 0.252 0.220 0.22 0.680 0.558 0.700 0.563 0.64

0.7 0.239 0.206 0.21 0.631 0.522 0.654 0.526 0.63

0.3

0.0 0.291 0.252 0.27 0.769 0.636 0.796 0.640 0.81

0.3 0.271 0.232 0.24 0.705 0.581 0.730 0.587 0.71

0.7 0.254 0.215 0.23 0.660 0.545 0.681 0.549 0.72

0.7

0.0 0.377 0.314 0.33 0.917 0.758 0.949 0.763 0.90

0.3 0.350 0.290 0.29 0.860 0.709 0.884 0.712 0.91

0.7 0.329 0.270 0.29 0.794 0.657 0.824 0.662 0.79
∗True value computed as the variance of β3 across the 1,000 replications.

All the numbers were multiplied by 100 for readability.

CF no1 refers to the HACSC estimator ignoring the first stage estimation using a CF approach.

Table A4: Rejection probabilities for the null hypothesis H0 : β1 = 0.7 at a 5% of significance using
a t-test over the 1,000 replications with a rook type weighting matrix, N = 400, T=5.

CF CF no1 HACSC SHAC Cluster Non-Robust
ρ ψ

0.0

0.0 0.050 0.062 0.068 0.088 0.055 0.081

0.3 0.047 0.057 0.056 0.072 0.052 0.076

0.7 0.043 0.054 0.053 0.068 0.046 0.068

0.3

0.0 0.054 0.066 0.068 0.089 0.058 0.088

0.3 0.048 0.062 0.057 0.073 0.042 0.072

0.7 0.045 0.067 0.059 0.083 0.060 0.083

0.7

0.0 0.049 0.067 0.065 0.079 0.057 0.079

0.3 0.047 0.062 0.071 0.093 0.064 0.095

0.7 0.051 0.064 0.050 0.070 0.040 0.070
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Table A5: Rejection probabilities for the null hypothesis H0 : β2 = 0.6 at a 5% of significance using
a t-test over the 1,000 replications with a rook type weighting matrix, N = 400, T=5.

CF CF no1 HACSC SHAC Cluster Non-Robust
ρ ψ

0.0

0.0 0.076 0.067 0.069 0.096 0.061 0.093

0.3 0.078 0.064 0.077 0.101 0.066 0.102

0.7 0.079 0.072 0.079 0.104 0.074 0.105

0.3

0.0 0.082 0.072 0.089 0.108 0.076 0.105

0.3 0.082 0.075 0.079 0.106 0.076 0.104

0.7 0.081 0.069 0.089 0.119 0.078 0.108

0.7

0.0 0.071 0.068 0.075 0.099 0.073 0.099

0.3 0.077 0.066 0.092 0.111 0.080 0.110

0.7 0.069 0.064 0.063 0.080 0.053 0.077
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Figures

0.005 0.010 0.015 0.020

Control Function with correction
True

0.005 0.010 0.015 0.020

HACSC

0.005 0.010 0.015 0.020

Clustered

0.005 0.010 0.015 0.020

CF ignoring first stage

0.005 0.010 0.015 0.020

SHAC

0.005 0.010 0.015 0.020

Regular

Figure A1: Distribution of the computed variances of β̂3 obtained for the case with e following a
spatial AR(1) process (ρ = 0.7), and a following an AR(1) (ψ = 0.3), N = 400, T = 5.
∗True value computed as the variance of β3 across the 1,000 replications.
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